发布时间:2021-12-28 阅读量:4157 来源: 我爱方案网 作者: 我爱方案网整理
ABF和DBF系统之间的主要区别在于完成波束成形的方式;这两种方法都需要良好的通道间匹配。ABF使用模拟延迟线和求和,仅需要一个精密高分辨率、高速ADC。DBF系统是目前最受欢迎的方法,它使用“很多”高速、高分辨率ADC。DBF系统中的信号应尽可能靠近换能器基元进行信号采样,然后将信号延迟并对其进行数字求和。DBF架构的简化框图如图所示。

数字波束成形(DBF)系统简化框图集成和分割策略超声系统具有如此多的通道和元器件,虽然技术已经有了极大的进步,仍属于目前最复杂的系统。就像其他复杂系统那样,有很多方法可以进行系统分割。本节将回顾一些超声分割策略。早期的超声系统采用模拟波束成形技术,需要使用大量的模拟元器件。TGC和Rx/Tx路径上的数字处理通过定制ASIC来实现。
在多通道VGA、ADC和DAC广泛使用之前,这种方法很常见。ASIC具有大量栅极,其数字技术未针对模拟功能(比如放大器和ADC)优化。使用ASIC的系统很大程度上必须依赖于供应商产品的可靠性。ASIC、FPGA和DBF技术与分立式IC ADC和VGA结合使用是实现便携性的第一步,但使用多通道(四通道和八通道)TGC、ADC以及DAC让尺寸与功耗得到大幅下降。
这些多通道元器件可让设计人员从数字电路中将敏感模拟电路分割到独立电路板上。这样可以缩减系统尺寸,并且有利于在多个平台上重复利用电子电路。然而,以高引脚数互连四通道和八通道VGA与ADC会让PCB走线路由变得困难,某些情况下会迫使设计人员使用通道数较少的器件,比如从八通道ADC转而使用四通道ADC。
将大量多通道元器件放置在小面积内还会导致散热问题。进行最佳分割可能会变得很有挑战性。完整TGC路径采用多通道、多器件的进一步集成使设计变得更加容易,因为PCB尺寸和功耗要求得以进一步降低。
推荐阅读:
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。