通过示波器测试SPC协议解码

发布时间:2021-12-29 阅读量:1341 来源: 我爱方案网 作者: 我爱方案网整理

在很多的场合,我们往往需要测量较高精度的角度和位置,例如汽车的油门,节气门位置以及转向扭矩感应等。由此,用于传输磁感应强度的SPC应运而生。


PC(Short PWM Code)协议,是基于SENT(Single Edge Nibble Tranmission)协议的增强版,通过两个相邻周期的下降沿之间的脉冲实现数据传输,相对于模拟输出和PWM输出,具有很好的EMC特性,具有较高的传输速度,较强的可靠性和抗干扰能力。此协议广泛应用于精确的转动角度测量和位置检测,汽车应用包括踏板、油门或变速杆位置检测,悬架控制或电动助力转向系统直接扭矩检测等。


协议以单线半双工传输的方式进行数据传输,最多可以同时控制4个传感器。与SENT不同,SPC新增了触发字段,可表示三种模式:同步模式,ID选择与范围选择。SPC各个字段的值根据两个下降沿之间的时间来表示一个四位的值,根据下降沿时间除以一个固定的值所得的结果减去12就是所代表的值,这个固定的值成为单位时间(UT)。


SPC帧格式介绍


通过示波器测试SPC协议解码

SPC帧格式


触发字段(master Trigger Pulse):由主机发送,根据模式的不同,长度也不同。

同步字段(Sync frame):由从机发送,表示从机开始采集数据。

态字段(status Nibble):表示从机当前的状态,当触发字段的模式为ID选择或范围选择时,还表示从机的ID或当前范围值。

据字段(DataNibble):表示从机采集到的数据,根据从机的设置,数据字段的数量可以是3到6个不等。其数据可包含霍尔值与温度值。

校验字段(CRC Nibble):提供校验值,用于校验此帧是否正确。


实例应用-解码实例

模拟SPC通信协议,对数据进行解码,如下图中所示:


通过示波器测试SPC协议解码

PC解码配置参数


如上图所示,为SPC解码所需配置参数,其中时间片宽度是指主机设置的单位时间。根据帧的数据字段的性质,设定数据字段的个数,如下图所示:

如上图,当数据字段的数量为3或者4时,表示数据仅有霍尔值。数量为5或6时,传感器除了测量霍尔值还会测量并传输温度值。


通过示波器测试SPC协议解码

SPC解码


通过示波器测试SPC协议解码

SPC解码


如上图所示,此帧代表触发字段为范围选择,且选择的范围为100mT,状态字段表示传感器当前状态为Normal且当前的磁通范围为200mT。



推荐阅读:

网络实现多轴运动控制方法概述

网络运动控制系统的实现解决方案

多轴运动控制的实现决方案

多轴运动控制的同步和新型控制拓扑

多轴运动控制同步不确定性及应用影响

相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。