ADI CbM 检测技术加速智能制造的实现

发布时间:2022-03-4 阅读量:1074 来源: Cytech Engineer 发布人: xiating

众所周知,智能制造对我国制造业有着重大的意义,是我国从低端制造走向高端制造的重要途径之一,发展智能制造有助于解决生产制造过程中的节能减排问题,同时智能制造技术也会带来设备利用率最大化、高效的生产率以及高质量完成生产任务等诸多优点。ADI 基于状态的监控(CbM)是一种具有预测性的对设备的维护策略,主要在设备振动检测方面建立趋势,减少设备的停机时间,预测故障以及计算设备资产的使用寿命,提高制造的安全性。


一、设备状态监测的定义及意义


设备状态监测的定义


针对运转中的设备整体或者某个重要零部件的技术状态,进行检查以判断其运行状态是否正常,同时对异常状况进行追踪并预测其后期的发展趋势、确定其磨损程度的一种监测技术。


设备状态监测的意义


在设备不停机状态下,对设备技术状态进行实时监测追踪,并准确地掌握监测部位的修复或者更换情况。可以最大限度利用关键部位零部件的使用潜力,避免零部件的过剩维修与保养,大大节约了维护成本以及减小设备的停机损失,尤其对自动化生产的工厂有着重要的意义。


二、传统设备维护与状态监测的区别


传统的设备维护往往都是对设备进行定期的人为检查。这种检查的间隔周期一般比较长,且根据主观感觉和经验进行判断来保证设备正常的运行,这就容易导致误判,比如一些零部件本来还可以继续使用,但是人为判断为失效,就导致资产浪费。而状态监测是一种动态的监测技术,也是一种非破坏性检查,通过加装布设各种传感器对设备异常的振动信息、电流信息、温度信息、磨损信息等进行实时监测。因此,相比于传统的定期维护而言,状态监测更加专注设备的实际技术状态。下表(表1)为:传统维护和状态监测的成本区别。


7.png

表1 传统维护与状态监测成本区别


三、设备资产的维护周期


下图(图1)是设备资产的维护周期图,从图中可以看出一个设备的生命周期一般经历:初期使用阶段,定期维护阶段,潜在故障阶段,基于状态的维护阶段和功能故障阶段。


每个阶段的设备运行特征有以下特点:


初期使用阶段:初期的时候往往有保修范围的,在保修范围内设备故障维修成本均可以得到保证。

定期维护阶段:这个阶段由于维护频繁同时设备也处于较佳的状态,也不容易出问题。

潜在故障阶段:如果说有一种手段,可以在设备潜在故障阶段,就能够及时捕捉设备的技术状态参数,并加以实时监测,就可以大大延长设备使用寿命。潜在故障阶段往往会增加了振动特性信息。

基于状态的维护阶段:往往我们可以把潜在故障阶段和CbM阶段放在一起,这就对传感器提出了要求,比如带宽要宽,噪声要低,因为往往潜在故障阶段出现的振动信息的频率比较高(5KHZ以上),信号的幅值很低。

功能故障阶段:在这个阶段去维修设备往往是要付出很大的代价。


ADI 的CbM技术就是在潜在故障期和状态监控期,对设备关键零部件部位进行实时监测,获取零部件运行技术参数,进而让用户做到最大程度的利用设备,并大大减小因为没有及时维护所导致的成本损失。


8.png

图1 设备维护周期示意图


四、ADI CbM技术在振动监测方面的技术应用


我们都知道用加速度计可以用来监测设备的振动特性。在状态监测领域,业界通常使用压电式传感器或者MEMS加速度计进行振动监测。两者各有优缺点,目前在客户端,ADI MEMS加速度计已经倍受客户的青睐,逐步地开始替换压电式传感器了,下图(图2)是ADI MEMS加速度计和压电式传感器的对比。


9.png

图2 MEMS加速度计与压电式传感器性能对比图


可以看出:MEMS加速度计在DC性能、抗冲击、线性度等各方面的指标都是优于压电式传感器的,最重要的就是MEMS 加速度计成本比较低,这也是客户端替换压电式传感器非常重要的一个原因。


ADI在CbM振动监测领域有着多种的MEMS传感器,根据设备种类特点可以选择不同的MEMS加速度计,其中ADXL100X以及ADXL35X这两个系列倍受欢迎。接下来我们以旋转设备监测为例,阐述如何去选择MEMS 加速度计。


轴承的失效特点分析


轴承是旋转零部件中的关键零件,振动监测部位一般位于主轴以及轴承。从下图(图3)可以看到:


· 当轴承内外圈出现裂纹时,在转动过程中,内部滚珠会周期性对内外圈裂纹进行冲击,此时会产生周期性的振动信息,该振动信号初期的时候往往频率比较高(大于5KHZ)振幅比较小;

· 到了第二阶段时由冲击产生的振铃效应增加,频率往往在500HZ到5KHZ之间,到了第三阶段轴承温度升高,能量传播到低频;

· 最后一个阶段就是轴承失效阶段。


ADI的CbM技术主要针对第一阶段和第二阶段,对旋转设备进行振动信号的捕捉与监测,提供设备技术状态参数,进而达到延长寿命减小设备宕机的作用。


10_副本.png

图3 轴承失效阶段图


CbM振动监测关注加速计的指标


计算在振动监测中振动所产生的加速度公式如下:


14.png


其中d 表示振动部件的间隙值,f表示振动的频率,一般取最大频率。


从公式可以看出:振动产生的加速度与频率的平方成正比,比如100HZ振动在1um的间隙下可以产生0.395g加速度,1KHZ振动可以产生39.5g的加速度。


因此对于CbM的振动监测首先要考虑加速度计量程的选择,其次是噪声的加速度计,比如上图(图3)中轴承的频谱图中,初期振动往往频率高于5KHZ,出现的幅值也很小,如果带宽不够,或者噪声大的情况下就捕捉不到初期的振动信号特性。


ADI 的ADXL100X和ADXL35X系列加计可以满足振动状态的监测,同时ADI也提供了一系列的整套方案推荐。


电机/发电机/轴承/齿轮等振动监测方案推荐


在振动监测领域ADI不仅仅提供前端传感器的解决方案,也提供整套的数据采集方案。


ADXL1002参考设计方案推荐如下图(图4):


11.png

图4 基于ADXL1002与AD7768-1的参考设计图


该设计整体方案十分简单,选用了集成度很高的ADC:AD7768-1,因此前端不需要太多调理方案。前端传感器不仅仅局限于ADXL1002,该参考设计适用于ADXL100X全系列传感器使用。


特点:


· ±50g - ±500g量程,带宽11KHZ-24KHZ;

· 整体成本较低;

· 高性能、高精度、小尺寸。


IEPE 接口传感器方案推荐


12.png

图5 ADXL1002/ADXL1002 IEPE 与AD7134的参考设计图


上图(图5)中是压电式传感器,针对压电式传感器,ADI的ADXL1002 IEPE可以兼容替换,同时方案中选用全差分可编程增益仪表放大器LTC6373可以很灵活的对信号进行调理,AD7134是ADI最新技术的CSTD ADC,系统对前端抗混叠设计要求极低,使得系统设计更加容易。


特点:


· 低噪声、高动态范围、低失真;

· 无需抗混叠滤波器设计;

· 高精度、小尺寸。


以上只是举了两个推荐参考设计的例子,除了这两种方案,ADI还提供更多更丰富的产品组合以及CbM模块等产品。


五、CbM中如何选择正确的加速度计


产生振动的因素很多,比如轴承磨损、电机不对中、齿轮啮合不理想等都会在设备运行中产生振动,并且这些振动各有特性,因此我们针对不同振动类型选择合适的传感器尤为重要,对监测的准确性以及系统的成本控制都有重要意义。下表(表2)是ADI在不同情况下推荐的MEMS 加速度计整理:


13.png

表2 MEMS加速度计应用类型推荐表


比如实施旋转设备预测性维护可以选择ADXL100X系列产品;设备不平衡不对中,松动失调等中后期故障可以选择ADX35X系列产品;低功耗应用可以选择ADXL362/ADXL367;如果客户开发能力不足,可以选择ADI提供的CbM模块产品ADCMXL3021/ADIS16228等产品。


六、总结


基于状态的监测不仅仅局限于振动的监测,同时有声音、光电、温度等的监测,在各个参量的监测中,ADI均提供高性能的产品解决方案供客户选择。相信在未来的5-10年内,随着智能制造技术被广泛地应用于加工制造行业,ADI的产品以其有益的性能会被广泛的使用,不仅会带来技术的改进,也会促进产业的变革和提升。


相关资讯
高可靠+低功耗:虹扬SOT23封装ESD二极管领跑车规级防护市场

随着汽车电子化、智能化加速,车载系统对ESD(静电放电)防护的要求日益严苛。虹扬电子推出的车规级ESD保护二极管AH05C325V0L,采用SOT23封装,符合AEC-Q101标准,专为CAN总线、车身控制单元(BCU)及电子控制单元(ECU)等场景设计。其核心特性包括80W浪涌吸收能力、5V反向工作电压、单向电流设计,以及低漏电流和高抗静电能力(±30kV接触放电),为敏感电子元件提供高效防护。

消费电子补贴效应凸显,中小尺寸驱动IC需求三连增

全球显示面板核心元器件市场呈现企稳态势。根据TrendForce最新研究报告显示,2023年第一季度面板驱动IC产品均价环比下降幅度收窄至1%-3%区间,第二季度虽仍存在价格下行压力,但降幅预计将控制在2个百分点以内。这标志着自2020年疫情引发的剧烈市场波动后,驱动IC价格曲线首次出现明显筑底信号。

成本直降40%!易飞扬硅光模块如何重构DCI市场格局?

在全球5G网络部署与边缘计算需求井喷的背景下,易飞扬创新推出基于O波段的100G QSFP28 DWDM光模块,直击城域网络升级痛点。该产品通过零色散传输架构与硅光集成技术,突破传统C波段方案在中短距场景下的性能瓶颈,以低于3.5W的功耗实现30km无补偿传输,同时兼容开放光网络架构。据行业测算,其部署成本较同类方案降低40%,为5G前传、分布式AI算力互联及绿色数据中心建设提供了高性价比选择,或将成为运营商边缘网络改造的关键技术引擎。

充电效率94.8% vs 国际竞品:国产IC技术路线图全解析

在全球能源转型与欧盟新电池法规(EU 2023/1542)的驱动下,旭化成微电子(AKM)于2025年2月正式量产AP4413系列充电控制IC,以52nA超低功耗、94.8%充电效率及多电压适配等核心技术,重新定义小型设备供电逻辑。该产品通过电容器预充电机制破解完全放电恢复难题,并凭借动态电压调节算法兼容光能、振动等微瓦级能源输入,显著优于TI、ADI等国际竞品。面对国产替代窗口期,AP4413依托BCD工艺与专利壁垒抢占先机,有望在智能家居、工业传感等千亿级市场替代传统一次性电池方案,成为环保供电赛道的标杆级解决方案。

新能源汽车与工业4.0双重驱动:全球电子分销巨头技术布局揭秘

作为全球电子元器件分销领域的领军者,贸泽电子始终以"技术赋能创新"为核心战略,通过构建覆盖1200余家原厂的供应链网络,为工业自动化、汽车电子、智慧农业等前沿领域提供关键技术支持。2025年第一季度,公司新增物料突破8,000项,其中多项产品体现了行业技术演进的三大方向: