发布时间:2022-03-8 阅读量:18553 来源: PI电源芯片 发布人: xiating
对于产品设计工程师来说,如何提升产品竞争力是他们面对的核心挑战。充电器和适配器要越做越小;能够为智能手机、平板电脑、笔记本电脑和其他便携式设备提供完整的USB-C功率传输(PD)、数字控制电源(PPS)功能;充电时间要越来越短。众所周知,设计更小巧的充电器和适配器的关键在于减少元件数量和最大限度地提高效率:但说起来容易,实现起来却有难度。
在新的USB协议下,仅仅提供具有低功耗的紧凑高效的功率变换方案是不够的。新的USB电源协议要求在受电设备和电源之间进行精确的双向通信。USB PD使负载和电源能够设置多个功率和电压挡位,功率高达100W(现在甚至提出了更高的功率)。PPS初衷是为了适应电池技术的不断升级,同时前瞻性地允许充电中途调整输出参数。PPS支持输出以20mV或50mA微调。
为了实现先进的USB电源协议,除了反激式控制器外,设计工程师还需要使用专用的USB控制器或微控制器。这两个IC之间还需要低时延通信,确保整个解决方案符合USB协议。
化解难题
为了化解这些难题,设计工程师现在可以考虑选用内置USB PD控制器的高度集成的反激式开关IC产品系列。Power Integrations的InnoSwitch?3-PD系列IC是适合于USB Type-C、PD和PPS适配器的集成度极高的解决方案,除了初级功率开关和多模态准谐振反激控制器外,同时还集成了USB-C和PD控制器(图1),以及初级侧检测电路、FluxLink?隔离数字控制和同步整流驱动器。根据具体的参数规格,设计工程师可以选择高压硅MOSFET或PowiGaN?功率开关。
图1:InnoSwitch3-PD可缩减物料清单(BOM)并简化USB-C PD和PPS适配器的设计
基于InnoSwitch3-PD IC的设计符合所有全球能效法规,其空载功耗低至14mW。这些设计效率高损耗少,无需使用尺寸大且成本高的散热片,有助于减小设计方案的外形尺寸并降低成本。Power Integrations的FluxLink高速通信反馈链路支持快速、精确的次级侧调整。输入及输出电压监测可实现精确的电压缓升、跌落和输入过压保护,以及具有可对故障响应单独设定的输出过压和欠压故障检测。InSOP?-24D封装非常紧凑,尺寸仅为10.8mmx9.4mmx1.6mm。InnoSwitch3-PD产品系列包括三款内部集成650V硅MOSFET的IC和三款内部集成750V PowiGaN?氮化镓功率开关的IC(见表1)。
表1:InnoSwitch3-PD控制器适用于各种USB-C PD+PPD适配器功率水平和输入电压范围,共包括三款内部集成650V硅MOSFET的IC和三款内部集成750V PowiGaN氮化镓功率开关的IC
借助现成小型化方案,加快上市速度
为了快速启动小型化USB-C PD+PPS适配器和充电器的开发,并加快上市速度,设计工程师可以从涵盖30W、45W和60W应用的多种参考设计中进行选择。以下每个设计都采用了内部集成750V PowiGaN开关的IC;硅版开关的参考设计也有提供。它们都支持90至265VAC的输入电压范围,并满足DOE6和CoC v5 2016平均效率要求以及CISPR22/EN55022 Class B传导EMI限制。
DER-836:30W USB PD 3.0电源
该设计范例(图2)使用InnoSwitch3-PD INN3878C器件。这款适配器的尺寸为1.73” (44mm)×1.73” (44mm)×0.817” (21mm),功率密度为12.27W/in3(不含外壳)。该设计在230VAC下的空载输入功率<18mW。它只使用59个元件,有助于提高功率密度。支持以下USB PD/PPS输出性能:
· PDO1:5V/3A(固定供电)
· PDO2:9V/3A(固定供电)
· PDO3:12V/2.5A(固定供电)
· PDO4:15V/2.0A(固定供电)
· PDO5:20V/1.5A(固定供电)
· PDO6:3.3V–11V/3A(数字控制电源,30W限定功率)
· PDO7:3.3V–16V/2A(数字控制电源)
图2:参考设计DER-836仅使用59个元件,可提供30W输出功率
DER-837:45W USB PD 3.0电源
该设计范例(图3)使用InnoSwitch3-PD INN3879C器件。它仅需54个元件,可提供14.0W/in3的功率密度,其尺寸为1.89” (48mm)×1.81” (46mm)×0.94” (23.8mm)(不含外壳)。支持以下USB PD/PPS输出性能:
· PDO1:5V/5A(固定供电)
· PDO2:9V/5A(固定供电)
· PDO3:15V/3A(固定供电)
· PDO4:20V/2.25A(固定供电)
· PDO5:3.3V–11V/5A(数字控制电源,45W限定功率)
· PDO6:3.3V–16V/3A(数字控制电源)
· PDO7:3.3V–21V/2.25A(数字控制电源)
图3:参考设计DER-837仅使用54个元件,可提供45W输出功率
RDR-838:60W USB PD 3.0电源
该参考设计(图4)有61个元件,尺寸为2.24" (57mm)×2.24" (57mm)×0.76" (19.2mm),功率密度为15.7W/in3(不含外壳)。该设计采用INN3879C集成控制器,具有较少的USB PD/PPS输出性能:
· PDO1:5V/3A(固定供电)
· PDO2:9V/3A(固定供电)
· PDO3:15V/3A(固定供电)
· PDO4:20V/3A(固定供电)
· PDO5:3.3V–21V/3A(数字控制电源)
图4:参考设计RDR-838仅使用61个元件,可提供60W输出功率
总结
借助创新的InnoSwitch3-PD系列高度集成的反激式开关IC,设计工程师就会拥有一套新工具,可快速开发出高效且元件数量非常少的充电器和适配器,并且它们还具备完整的USB-C PD+PPS功能。这些功能完善的IC包括同时选择硅或PowiGaN集成功率开关版本。它们在输入和输出端受到全面保护,可实现具有传统设计所需元件一半的解决方案,同时仍提供低至14mW的空载功耗。它们采用超薄的InSOP-24D封装,适合高功率密度USB-C电源解决方案的批量生产。
随着工业4.0的推进,无线传感器在智能制造中的需求激增,其核心挑战在于如何在复杂射频环境中实现低功耗、高可靠性与安全性。本文聚焦低功耗蓝牙®(BLE)、SmartMesh(基于IEEE 802.15.4e的6LoWPAN)及Thread/Zigbee(基于IEEE 802.15.4的6LoWPAN)三大无线标准,从功耗、可靠性、安全性和总拥有成本等维度展开系统性评估。研究表明,SmartMesh凭借时间同步信道跳频(TSCH)技术,在恶劣工业场景中展现出99.999996%的超高可靠性及极低能耗;而BLE则在大数据量传输场景中表现卓越。此外,融合边缘人工智能(AI)的新型传感器设计进一步优化了能效,为工业无线传感提供了创新解决方案。
随着智能家居技术的快速发展,家庭自动化系统正以前所未有的方式提升生活便利性。然而,分布式传感器的无线部署对电池供电提出了严峻挑战——如何在有限电池容量下实现长久续航?传统电源方案因效率不足、静态电流过高而难以满足需求。如今,纳米功耗(nanopower)技术的创新为这一难题提供了突破口。通过采用ADI公司新一代MAX77837降压-升压转换器和MAX18000升压转换器,智能家居传感器可将单节碱性电池或锂离子电池的低电压(低至0.5 V)高效转换为稳定3.3 V或5 V系统电压,同时将静态电流控制在纳安级。本文结合具体电路设计与仿真工具,揭示如何通过超低功耗电源管理延长设备寿命,推动智能家居向更小、更可靠、更低成本的方向迈进。
在模拟电子系统中,可变增益放大器是实现动态信号调理的核心模块。本实验聚焦运算放大器拓展应用,通过晶体管压控切换与电位计阻值调节两种方法构建可变增益放大器。采用ADALM2000模块搭建实验平台,结合OP97运放、2N3904晶体管及可调电阻网络,探究增益动态控制机制。通过方波驱动晶体管实现增益阶跃切换,以及电位计连续调节反相/同相放大倍数,验证压控与手动增益调节的电路特性,为音频压缩、通信调制等应用提供硬件设计基础。
随着数字计算器件(如FPGA、处理器及ASIC)的工艺技术不断微缩至纳米级别,其内核电压持续降低至1V以下,电源容差窗口已缩减至±3%甚至更小。这一趋势对电源的精准性提出了严苛挑战:传统开关稳压器的输出误差可能导致内核电压偏离安全范围,进而引发器件故障或永久性损坏。本文聚焦高精度窗口电压监控器的核心作用,通过量化分析其阈值精度对电源窗口的影响,提出优化策略,确保低电压器件在严格容差范围内稳定运行,同时最大化电源输出性能。
晶振是电子设备中的关键元件,为各类电子产品提供稳定的时钟信号。了解晶振的主要参数能够更好地了解晶振性能以及如何根据参数选择合适的晶振。