“无开销”的DCR电流检测电路

发布时间:2022-03-30 阅读量:1085 来源: 我爱方案网整理 发布人: Aurora

电源系统设计的挑战之一是电流检测。在降压转换器中,一种流行的“无开销”方法是DCR电流检测。但这种电路精度很低,尤其是使用小型、低ESR电感器时,因此将被其它方法取代,如电流检测电阻器,或功率链路器件。

 

降压转换器是最常见的电源拓扑,电源工程师深知其优点和缺点。电源系统设计的挑战之一是电流检测。在降压转换器中,一种流行的“无开销”方法是 DCR 电流检测。说它“无开销”,是因为这种方法不会使电源设计增加额外的成本或功耗,但人所共知的是,这种电路精度很低,尤其是使用小型、低ESR电感器时,更是这样。

 

先来看看DCR检测电路的组成。这种电路足够简单:给输出电感器增加一个RC网络,生成差分信号就行了。RC网络将电感器电流转换成C1两端的电压。


DCR电流检测电路

 

图1:DCR电流检测电路。

 

RC值的计算足够简单,RC=L/DCR,其中:

 

L = L1的电感值;

 

DCR = 电感器L1的DC电阻;

 

R = 图1原理图中的R2(或者,如果有R3存在,就是R2和R3的并联);

 

C = 图1原理图中的C1。

 

请注意,在图1中,如果ISENSE峰值信号的幅度使差分放大器饱和,那么就增加R3,以降低该峰值信号幅度,使其处于差分放大器的规定范围内。

 

“无开销”总是受欢迎的,但常言说得好,“便宜无好货,好货不便宜”。这种电路的精度非常差。

 

首先,电感器的DCR有很宽的容限范围,± 7%甚至±10%是很常见的。

 

电感器DCR的典型规格

 

图2:电感器DCR的典型规格。

 

如果初始容限为10%,那么图1所示的180nH电感器的DCR可能低至261mΩ或高达319mΩ。雪上加霜的是,电感器会发热,铜线绕组的温度系数为3930PPM/ºC或0.393%/ºC。如果应用的温度上升至比环境温度高35ºC,电感器本身发热使温度再上升35ºC,那么标称DCR就可能升至:

 

1648618592668303.png

 

 

最差情况的上限为:


最差情况的上限为

 

 

最差情况的下限为:


最差情况的下限为

 

 

(标称值增大15%。总误差会低些,因为铜线的正系数补偿了电感器的低初始值。)

 

从工程设计的角度来看,这确实很糟糕,因为过流标记和过流停机都是基于这些电阻设定的。如果电路太敏感,就会在没有达到需要停机的程度就停机了。

 

情况能糟糕到什么程度?

 

假定正在设计一个能在1V时提供最大35A的电路(目前对一个切合实际的单相降压转换器而言,这个数值是合乎情理的)。如果电感器DCR处在容限低端,那么输出得到35A时,控制器认为提供了40A。这意味着,OCP不能设定为低于40A,否则电源会在标称负载时停机。

 

反过来,当OCP设定为40A,电感器DCR增大10%时,情况会变得多糟糕?

 

在这种情况下,实际负载电流为40A,但DCR为407µΩ,因此控制器认为输出电流是65A。这意味着,OCP需要设定为65A,如果不设定为这个数值,就有在不到40A时就出现OCP停机的风险。这似乎不能接受,可一旦OCP设定为65A,电路就必须设计成,在偶尔准确报告电流的情况下,也得连续提供这么大的电流。这意味着输出电感器和功率FET严重过度设计,电源必须提供35A,但却必须按照能够连续提供65A来设计。而且,使情况更糟的是,电感器中的电流除了有DC分量,还存在峰值至峰值纹波。这个纹波有多大呢?对纹波电流而言,通常的设计原则是20%。这意味着,逐周期限流值必须设定为高于65A,因此保护输出FET的能力就变得非常成问题了。

 

猜猜看如果针对30%纹波电流来设计会发生什么情况

 

然后,你会意识到,典型的电流检测电压范围为10mV至20mV。如果在一个电源中,有开关节点振铃,有输出电感器产生的杂散磁场,还有电流在旁路电容器和输出电容器中流通,那么就很难得到可以接受的信噪比(SNR)。要想信号质量还有任何希望的话,电流检测连接线必须仔细布置成差分对(因此,所拾取的任何噪声都是共模的),并布置得远离电感器、开关节点和大电流/高频电流回路。这在空间受限的设计中是很难的,一如现在空间受限设计中的一切看起来都很难一样。


开尔文电感器电流检测布线

 

图3:开尔文电感器电流检测布线。

 

我们能做什么?

 

首先,通过使用热敏电阻器或温度检测二极管(通常是小型晶体管中正向偏置的PNP基-射节),可以基于经验估计出电感器的温度。通过这种方式,可以调节铜线绕组电阻的热响应。这太有帮助了。工程师们真是太了不起了。如果我们确实做得非常仔细,那么最好的结果有可能达到±10%。

 

我们还能做什么?

 

我们可以忽略“无开销”的DCR电路,给输出电感器串联一个昂贵的、温度稳定的电流检测电阻器。这增加了成本,损害了转换器的效率,但是凭借良好的差分信号布线,我们能够以高得多的精度检测输出电流。随着容限累积,我们可以得到±5%或更好的总体电流检测性能。工程师们在设计评审中既证明了这种方案的合理性,又避开了对其设计影响效率和成本的批评,他们的勇气令我钦佩。

 

使用一个由温度稳定的合金绕组构成的电感器如何?这个想法一露头,我的心就被吓得狂跳不止。

 

还有其它方法吗?

 

有个东西比电流检测电阻器要好。让功率链路器件报告其电流。这种方法运用设计良好的智能电源状态(SPS),虽然增加了电流检测成本,但是能够提供与标称输出要求非常接近的峰值功率能力,二者功过相抵。结果大大减少了过度设计功率链路元件导致的浪费。对这种电流检测方法我们可以寄予多大期望?就合理的运行区域而言(不要期望输出电流处在零附近时出现奇迹),我们可以得到±1%初始精度,随着老化和温度变化,最差的容限为±2%。

 

一年又一年,技术的进步为工程师们提供了越来越好的基本构件。让“无开销”的DCR电流检测电路随风而去吧。

 


相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!