变压器耦合推挽功率放大电路特点

发布时间:2022-04-12 阅读量:1414 来源: 我爱方案网整理 发布人: Aurora

变压器耦合推挽功率放大电路特点。T1和T2,由两个NPN同型号并且特性完全相同的管子组成;利用变压器原、副边匝数比的不同实现阻抗变换,将实际的负载电阻RL通过原、副边的匝数比(n = N1 / N2),变换成所需要的等效电阻。

 

变压器

 

为了减小交越失真,静态时利用基极偏置电路,使T1和T2 具有较小集电极电流IC1=IC2。由于输出变压器原绕组两部分(N1 和N2 )的绕向一致,而IC1和IC2的流向相反,故绕组的直流磁势IC1 N1 - IC2 N2=0,即铁芯中无磁通,工作时不致产生磁饱和现象。这是它的主要优点之一。静态时,iL = 0,无功率输出。因为无输入信号(ui = 0)时,IC1和IC2很小,电源供给的直流功率也很小。当输入正弦信号电压ui时,则通过输入变压器Tr1将使T1和T2基极得到一个大小相等而极性相反的信号电压ui1和 ui2。当ui为正半周时,由变压器的同名端可知ube1为正,ube2为负。于是T1导通,T2截止。

 

此时,输出变压器Tr2的原边上半边绕组有集电极电流iC1流过,而下半边绕组无电流,iC2 =0。同理,在ui 的负半周时,情况正好相反,T1 截止,T2导通。Tr2原边上半边绕组无电流通过,而下半边绕组有电流。于是在一个周期的两个半周内。iC1、iC2轮流通过Tr2的原边上下两半绕组,而且大小相等,相位相反。因此,Tr2 的副边将有一个较完整的正弦波iL通过通过负载RL。变压器耦合推挽功率放大电路与互补对称功放电路比较,前者虽然解决了负载与放大电路输出级的阻抗匹配问题,但其体积大、笨重、频带窄、不便于集成等缺点限制了它的使用范围。

 

当芯片内部的开关管导通时,芯片的2脚将呈现高电平,外部P型三极管Q1截止,N型MOSFET管Q2导通。电流经变压器初级线圈和Q2到地,初级线圈储存能量。当内部开关管关断时,芯片的2脚为低电平,Q1导通,Q2截止,初级线圈回路断开。能量耦合到变压器的次级线圈。从变压器的另一次级线圈对输出电压进行取样,然后经分压后送到芯片的5脚可保证输出电压的稳定。该电路中次级主输出端为浮地电源输出,非常适合医疗等要求浮地的系统使用。高频功率电路,这种变压器是由8 个相同的小变压器构成,变比均为4∶1 ,它们的初级串联,而次级则采用并联结构。该变压器采用初级自冷和次级水冷相结合的冷却方式,这样考虑主要在于它们的热损耗不同,而且可以大大简化变压器的制作工序。

 

变压器

 

变压器为什么要测量机盖和油管之间的角度。变压器的瓦斯继电器有两个坡度要求。一个是沿瓦斯继电器方向变压器大盖的坡度,应为1%~1.5%。变压器大盖的坡度应在安装变压器时,从底部按要求的坡度垫好。另一个则是从变压器油箱到油枕连接管的坡度,应为2%~4%。此坡度是制造时设置好的。有了这两个坡度,可以防止变压器内贮存空气,并在变压器内部故障时便于气体可靠地冲入瓦斯继电器,保证瓦斯继电器正确动作。


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。