发布时间:2022-04-14 阅读量:4202 来源: 我爱方案网整理 发布人: Aurora
在电力系统中,大功率电源变压器的中性点接地方式通常可以分为两个大类,一个是中性点直接接地或经过低阻抗接地,这一方法也被称为大接地电流系统。而另一类则是中性点不接地,经过消弧线圈或高阻抗接地,这一方法也被称为小接地电流系统。

在实际的应用中,对6-10kV的电力系统来说,由于设备绝缘水平按线电压考虑对设备造价的影响不大,因此为了提高供电可靠性,一般采用中性点不接地或经消弧线圈接地的方式就可以满足设备安全运行的需要了。而对于110kV及以上的电力系统而言,由于主要考虑的是降低设备绝缘水平,因此为了简化继电保护装置,一般会采用中性点直接接地的方式。并采用送电线路全线架设避雷线和装设自动重合闸装置等措施,以此来提高供电可靠性。
而对于20-60kV的电力系统来说,一般一相电源变压器在接地时,其本身的电容电流并不是很大,其内部网络结构也不是很复杂,设备绝缘水平的提高或降低对于造价影响不很显著,所以目前业内一般会选择采用中性点经消弧线圈接地方式。而1KV以下的电网的中性点多采用不接地方式运行。但如果是电压为380/220V的系统,则电源变压器需要采用三相五线制的方式。
变压器会爆炸主要因为变压器油为可燃液体,其蒸气与空气混合形成爆炸性气体,遇高温可以发生爆炸,变压器油是变压器火灾爆炸事故的根源。绝缘损坏,线圈绝缘老化。油质不佳,油量过少、铁芯绝缘老化损坏,检修不慎,破坏绝缘。接触不良。产生局部过热,破坏线圈绝缘发生短路或断路,产生高温、电弧使绝缘油迅速分解,产生大量气体(80%是氢气),压力骤增。原因有:螺栓松动(变压器常在冲击负载下运行,产生的震动会造成接点松动)、焊接不牢、分接开关触头损坏三种。
雷击过电压。雷击产生的过电压击穿变压器的绝缘,烧毁变压器,引起火灾。负载短路。负载发生短路,变压器承受巨大的短路电流,如果保护系统失灵或整定值调整过大,有可能烧毁变压器。安装短路保护装置,且熔体的选择必须合乎要求。当变压器内部短路时高压侧应能迅速熔断,当变压器各引出回路发生短路或严重过载时低压侧能被熔断。

变压器过热,轻则影响使用寿命(如变压器在正常工作温度90℃下运行寿命为20年;若温度升至105℃,则寿命为7年;温度升到120℃,寿命仅为2年),重则发生喷油燃烧或爆炸。引起变压器过热的原因有:接触不良,接触电阻大;长期严重过负荷运行,使线圈发热;电压过高,铁损增大(当电压增高10%时,铁损将增加30%~50%);环境温度过高,通风不良;变压器由外界火源引燃。由于变压器周围堆放的可燃物燃烧后引燃变压器或变压器室而使变压器起火。
无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。
RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。
有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。
晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。