先于5G时代的千兆级LTE支持未来体验

发布时间:2022-04-21 阅读量:785 来源: 我爱方案网整理 发布人: Aurora

尽管5G已被提上日程,但这依然不影响一个既定事实:5G商用到形成气候,还需要3-5年——根据工信部、3GPP、中国IMT-2020(5G)推进组以及三大运营商的5G商用计划显示,2017年中国将展开5G网络第二阶段测试,2018年大规模试验组网,2019年建设5G网,最快2020年商用5G。严格说,每一代移动通信技术要想覆盖的严丝合缝,必须经历一个过渡期,而5G的必经之路,就是千兆级LTE。

 

先于5G时代的千兆级LTE  

 

千兆级LTE的理论速度可以达到光纤级别的1Gbps,与国际电信联盟对4G定义的标准一致,业界称之为LTE-A。单从速度来说,千兆级LTE当然没法和数千兆级的5G相提并论,不过,前者是在为5G铺路,未来5G的技术很多都是从4G演化而来,两者会长期共存和互补。  

 

原因在于,5G不可能一夜之间部署完整,通常会先从热点地区开始部署,再慢慢扩展。在5G的整个时间表中,4G还会继续发展,LTE、LTE-A、LTE-A Pro会和5G长期共存和互补,这是未来5G全球标准商业化的步骤。这也是为什么到现在,一个多模的手机里,2G、3G、4G频段都在协同工作。  

 

那么,业界所称的“光纤级别”的速率,甚至高于家庭光纤速率是怎么炼成的?  

 

这就要从LTE技术的起点说起,它得具备这几个特性:  

 

LTE最入门级的考虑就是有一个20MHz带宽的载波(以前GSM时代是200KHz,WCDMA和HSPA+时代是5MHz),在这个基础上,LTE的调制方式也比2G和3G有了一个升级,因为一个信道的宽度、容量和数据率、单位时间传输的数据呈正比。此载波基础上,下行初始的调制方式是64-QAM(Quadrature Amplitude Modulation,正交振幅调制——可以视为一种信号调制方式,每个信号可以传6个bit),且至少部署2x2MIMO(指的是在接收端要有两个天线,有两个接收的射频通路,可以理解成有两个数据流)。这种配置下,一个数据流可以传75Mbps,由于至少有两个数据流,所以实际就是75×2=150Mbps。  

 

以上速率已经是几年前的LTE,而LTE基本每年都在发展,整个生态系统同样在发展。  

 

每一代通信技术的原理都大同小异,每一代移动通信的升级,载波带宽都在持续提升,而千兆级LTE之所以能达到第一代LTE十倍的速度,是因为多种技术的加持,包括:载波聚合、更复杂的高阶调制、更高阶的MIMO。  

 

(1)第一步,载波聚合,增加信道数量。简单的理解就是利用基带以及 射频技术 ,将三个载波进行聚合,成为一个更宽的通道。这是三个技术中最易实现最早被采用的。  

 

以澳洲运营商Telstra举例。Telstra有三个授权频段,每个频段都是20MHz,它可以通过射频和基带技术,把这三个载波、三个频段聚合起来,变成一个更宽的信道=3×20MHz,以达到更高的传输速度=60MHz。由于每个载波可以传输2个数据流,三载波条件下一共有6个数据流,一个数据流是64-QAM,速度是75Mbps,所以三载波聚合可以得到450Mbps。这就是实现千兆级的技术之一,通过三个载波聚合将速度提升到450Mbps。

 

载波聚合

  

(2)第二步是高阶调制,通过增强调制方式让每个信号搬运更多的数据。 

 

简单来说,最初使用的64-QAM承载了6个bit仅支持75Mbps的速率,现在,高通将其升级到256-QAM,比原来提升了33%,每个可以支持100Mbps。再次经过三载波聚合,结果就是6×100Mbps,在两个技术叠加的情况下可以将速率从450Mbps 提升到 600Mbps。这个数字足以让我们兴奋了。

 

下行链路256-QAM

 

(3)第三步是在终端上部署更高阶的MIMO,更多的天线,更多的收发链路,从而支持更多的数据流。  

 

再次以Telstra的部署为例,在前两个技术提升上,高通将6个信息流以载波聚合达到了600Mbps,而使用4×4MIMO技术之后,一个载波上的数据流数量从2个变成4个,这种部署下的三载波(其中两个载波有4x4MIMO,一个载波是2x2MIMO),就可以有10个信息流,将速率提升到10×100Mbps=1000Mbps。由此,LTE的速率达到千兆级,足以同时收看37个以上的Netflix 4K视频节目了。

 

千兆级LTE支持未来体验  

 

1Gbps的速率是一种什么样的体验?不妨设想一下这几种使用场景:沉浸式的VR、云存储和计算、更丰富的娱乐、即时APP。  

 

比如,如果将海量的音频、视频资源都放在云端,可以用极短的时间将文件下载下来,这样一来,电池续航时间能得到延长,终端发热等各方面情况也会相应有所改善。  

 

再以云存储为例,通过千兆级LTE,用户在云端读取文件的速度体验近于在本地实时读取的体验。未来,云盘替代本地存储将有望实现。  

 

即时APP的意思是,未来很有可能会在手机上将APP上的所有数据存储到云端,以极高的速度读取云端数据打开应用。因此,手机很可能根本用不着下载大部分的外置应用,而可以实现即时打开,即时使用。

 

 


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。