支持Massive MIMO的信号处理

发布时间:2022-04-24 阅读量:1216 来源: 我爱方案网整理 发布人: Aurora

我们对高速移动数据的渴求是无止境的。可是在城市环境中可用RF频谱已经饱和,显然需要提高基站收发数据的频谱利用率。


基站包含大量天线,因此,提升基站频谱效率的一种方案是通过这些同一频率资源与多台空间上分离的用户终端同时通信并利用多径传输,故通过基站提升效率是方案之一。这种技术常被称为massive MIMO(大规模多入多出)。您可能听到过massive MIMO被描述为大量天线的波束赋形。随之而来的问题是:何谓波束赋形?


波束赋形与Massive MIMO的关系


不同的人对于波束赋形这个词有着不同的理解。波束赋形是指根据特定场景自适应的调整天线阵列的辐射图。在蜂窝通信中,许多人认为波束赋形是将天线功率主瓣指向用户,如图1所示。调整各天线收发单元幅度和相位,使得天线阵列在特定方向上的发射/接收信号相干叠加,而其他方向的信号则相互抵消。一般不考虑阵列和用户所处的空间环境。这是波束赋形,不过只是它的一种特别实现。


传统波束赋形


图1.传统波束赋形


Massive MIMO可被视为更广泛意义上的波束赋形的一种形式,不过它与传统形式相去甚远。Massive意指基站天线阵列中的大量天线;MIMO意指天线阵列使用同一时间和频率资源满足空间上分离的多位用户的需求。Massive MIMO也认为在实际系统中,天线与用户终端—以及相反过程—之间传输的数据经过了周围环境的滤波。信号可能会被建筑物和其他障碍物反射,这些反射会有相关的延迟、衰减和抵达方向,如图2所示。天线与用户终端之间甚至可能没有直接路径。人们发现,这些非直接传输路径同样有利用价值。


天线阵列和用户之间的多路径环境


图2.天线阵列和用户之间的多路径环境


为了利用多路径,天线元件和用户终端之间的空间信道需要加以表征。文献中一般将这种响应称为信道状态信息(CSI)。此CSI实质上是各天线与各用户终端之间的空间传递函数的集合。用一个矩阵(H)来收集此空间信息,如图3所示。下一节将详细讨论CSI概念及其收集方法。CSI用于数字化编码和解码天线阵列所收发的数据。


表征massive MIMO系统需要信道状态信息


图3.表征massive MIMO系统需要信道状态信息 


表征基站与用户之间的空间信道

 

不妨考虑一个有趣的类比:一个气球在某个位置被戳破了,发出"啪"的一声,在另一个位置记录此声音或脉冲,如图4所示。在麦克风位置记录的声音是一个空间脉冲响应,其包含的信息是周围环境中气球和麦克风在该特定位置所独有的。与直接路径相比,被障碍物反射的声音会有衰减和延迟。 


通过声音类比说明信道的空间特性

 

图4.通过声音类比说明信道的空间特性


如果扩大该类比以模拟天线阵列/用户终端场景,那么需要更多气球,如图5所示。注意,为了表征各气球与麦克风之间的信道,我们需要在不同时间戳破各气球,使得麦克风记录的不同气球的反射不会重叠。另一方向也需要表征,如图6所示。本例中,可以在用户终端位置的气球戳破时同时完成所有录音。这样所花的时间要少得多! 


通过声音类比下行链路信道表征

 

图5.通过声音类比下行链路信道表征


通过声音类比上行链路信道表征


图6.通过声音类比上行链路信道表征


RF领域利用导频信号表征空间信道。天线与用户终端之间的空中传输信道是互易的,即该信道在两个方向是相同的。这与系统工作在时分复用(TDD)模式还是频分复用(FDD)模式有关。在TDD模式下,上行链路和下行链路传输使用相同频率资源。互易性假设意味着只需要在一个方向上表征信道即可,上行链路信道是显而易见的选择,因为只需要将一个导频信号从用户终端发送,并由所有天线元件接收。信道估计的复杂度与用户终端数成比例,而非与阵列中的天线数成正比。这点非常重要,因为用户终端可能在移动,故信道估计需要频繁进行。基于上行链路表征还有一个重要优势,那就是所有繁重的信道估计和信号处理任务皆在基站完成,而非在用户端完成。

 

每个用户终端发射正交导频符号


图7.每个用户终端发射正交导频符号


现在,收集CSI的概念既已建立,那么如何将此信息应用于数据信号以支持空间复用呢?滤波基于CSI而设计,以对天线阵列传输的数据进行预编码,使得多路径信号会在用户终端位置相干叠加。这种滤波还可以用来线性组合天线阵列RF路径收到的数据,从而检测来自不同用户的数据流。下一节更详细讨论这个问题。


支持Massive MIMO的信号处理


上一节介绍了如何估计CSI(用矩阵H表示)。检测和预编码矩阵基于H计算。这种矩阵有多种计算方法。本文重点讨论线性方案。线性预编码/检测方法的例子有最大比率(MR)、迫零(ZF)和最小均方误差(MMSE)。本文未提供从CSI导出预编码/检测滤波器的全过程,但讨论了其优化标准及每种方法的优缺点。关于这些话题的更详细介绍,请参阅文末给出的参考文献1, 2, 3。


对于上述三种线性方法,图8和图9分别显示了上行和下行链路中信号处理的工作方式。针对预编码,可能还有某种缩放矩阵,用以归一化阵列上为简单起见而忽略的功率。


上行链路信号处理表示共轭转置


图8.上行链路信号处理表示共轭转置。


下行链路信号处理T表示转置。* 表示共轭


图9.下行链路信号处理T表示转置。* 表示共轭。


顾名思义,最大比率滤波旨在最大程度提高信噪比(SNR)。从信号处理角度看,这是最简单的方法,因为检测/预编码矩阵刚好是CSI矩阵H的共轭转置或转置。其最大缺点是忽略了用户间干扰。


迫零预编码试图解决用户间干扰问题,通过设计优化标准来使其最小。检测/预编码矩阵是CSI矩阵的伪逆。伪逆的计算开销高于MR情况中的复共轭。然而,由于太注重降低干扰,用户的接收功率会受影响。 


MMSE试图在放大信号与降低干扰之间取得平衡。这种整体观需付出的代价是信号处理复杂度较高。MMSE方法给优化引入了一个正则项—在图8和图9中表示为β—利用它可以找到噪声协方差与发射功率的平衡点。此方法在文献中有时也被称为正则化迫零(RZF)。


 


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。