电源分配网络的PCB特性影响

发布时间:2022-05-6 阅读量:828 来源: 我爱方案网整理 发布人: Aurora

现在各种移动电子设备都应用了密集的印刷电路板PCB设计,并使用了多个高速数字通信协议,这些高速数字协议支持高达 Gb 的数据吞吐速率并具有数百毫伏的差分幅度。入侵信号与受害信号出现能量耦合时会产生串扰,表现为电场或磁场干扰。电场通过信号间的互电容耦合,磁场则通过互感耦合。

 

电源分配网络的PCB特性影响

 

微带线收发交叉布线和带状线收发非交叉布线的方法可缓解串扰或耦合问题。当远端串扰远大于近端串扰时适用交叉模式。相反,当近端串扰远大于远端串扰时适用非交叉布线。近端串扰表示受害网络邻近入侵信号发射机而造成的串扰,远端串扰表示受害网络邻近入侵信号接收机而造成的串扰。通过分析入侵信号和受害信号这两个紧密耦合信号的 S 参数与瞬态响应,我们可以对比微带线和带状线的远端串扰和近端串扰。

 

100Ω差分阻抗和3 英寸长的受害信号和入侵网络信号线对的单模 S 参数通过数学方式转变为差分模式。端口1 和端口2 分别表示入侵信号对的输入和输出端口,而端口3 和端口4 分别表示受害网络信号对的输入和输出端口。入侵信号和受害信号的线对间空隙设置为8 mil(1 倍布线宽度)。

 

电源分配网络(PDN)的基本设计规则,最好的性能源自一致的、与频率无关的(或平坦)的阻抗曲线。这是电源稳定性非常重要的一个理由,因为稳定性差的电源会导致阻抗峰值,进而劣化平坦的阻抗曲线,以及受电电路的性能。源阻抗应该匹配传输线阻抗。一般来说,这是S参数测量和所有射频设备的基本前提。源阻抗(最常见的是50Ω)连接到阻抗与源匹配的同轴电缆,负载也端接到相同的阻抗。这种做法实现了完美的平坦阻抗,不管是从源看到负载还是从负载看到源都是一致的。稳压器的输出阻抗可以被认为是一个源,而PCB层可以看作是一根传输线。后端去耦电容就是负载。

 

当频率低于传输线谐振频率时,传输线特征阻抗可以用电感和电容项定义。电容可以在传输线远端没有端接时测量。电感可以在传输线远端短路时测量。正确匹配的传输线呈现完全平坦的阻抗曲线,其幅度等于特征阻抗。不正确端接的传输线呈现为电容或电感性质,在传输线谐振频率的倍数处会产生许多谐振和抗谐振频率。如果传输线是电容性质,那么抗谐振首先发生。如果传输线是电感性质,那么谐振先发生。

 

电源分配网络的PCB特性影响

 

在传输线和源不匹配的情况下,有两种可能的解决方案,具体取决于端接电阻是大于还是小于特征阻抗。如果端接电阻小于传输线的特性阻抗,那么抗谐振峰值会超过端接电阻。如果端接电阻大于传输线的特征阻抗,那么谐振峰值等于端接电阻。为了优化PDN性能,必须使PCB层阻抗与稳压器的输出阻抗相匹配。最好是使PCB层阻抗等于稳压器的输出阻抗,如果不可能实现的话,PCB阻抗应该低于稳压器输出阻抗,以便更好地包含与峰值阻抗最大值相关的峰值偏移。


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。