补偿一般干扰的方法

发布时间:2022-05-11 阅读量:1125 来源: 我爱方案网整理 发布人: Aurora

RFI是由射频信号耦合在ADSL 频带(0~1104或2208KHz)中造成的。如 AM 无线电由于双绞线与调制解调器前端不能完全平衡而耦合到信号中,FFT 的正弦状干扰信号的扩散可能会在很多子通道中造成数据速率下降,因此,有必要开发一些处理RFI的算法。


TEQ设计的主要标准是缩短通道,基于MMSE的TEQ设计是在较强的RFI源位置处置零。虽然置零会使速率降低些,不过一般说来噪声扩散会大幅下降,速率降低的代价也还合理。这样,如果校准 TEQ 时存在 RFI 源,可用TEQ来补偿 RFI。


接收机开窗口是可用于 RFI 补偿的第二种方法。接收机开窗口利用循环前缀中的信息形成窗口,它会影响噪声,只要通道存储器缩短至循环前缀减去窗口的长度,就不会影响信号。这样,我们得到的就是带有旁瓣的窗口,它比矩形窗口衰减要快得多。因此,即便 RFI 在调制解调器校准后出现,调制解调器仍对 RFI 的有害影响显示出较高的抗扰性。它付出的代价是通道缩短带来的额外限制(自由度更低)。


针对短环路(ADSL2+)进行优化的调制解调器架构

 

图2 针对短环路(ADSL2+)进行优化的调制解调器架构。

 

请注意,针对长环路进行优化的调制解调器的两条路径相结合,就构成了TEQ与FFT操作


基于传输频谱的性能改善

 

由于 ADSL 基于 DMT 调制,它在形成传输频带方面有很大的灵活性。我们可利用这种灵活性来改善 ADSL 系统的覆盖范围,用于处理混合 CO 与 RT 部署以及最小化串扰。


更大范围的频谱成型

 

DSL通道的常用形状使得高频比低频的衰减更大。此外,通道衰减随着环路长度增加而增大。由于 FDD ADSL系统将较高频率分配给下行以提高 ADSL 在较长环路上的性能,因此通常都需要提高下行数据率。

 

ADSL2是第二代ADSL,它用特定附件(范围扩展 ADSL2)解决上述问题,即采用频谱成型将功率置于通道更好的地方或将上下行重叠,前者可通过缩小下行频率的范围或提高功率实现,而后者需要一个 EC。此外,上行功率可降低频率以避免串扰并降低传入下行的回波。


ADSL2+处理CO与RT

 

混合部署情况

 

本地环路解除捆绑使得一家运营商可从CO为某一区域提供服务而另一家运营商则可从RT为同一区域提供服务成为可能。由于 RT 可能比CO离最终用户要近得多,因此 RT 带来的串扰会严重影响CO上运行的ADSL系统的性能。根据CO、RT与最终用户间距离的不同,以及不同线路间的耦合情况,性能所受的影响也有所不同。


ADSL2+是高速率版本的ADSL新标准,其下行带宽的宽度加倍,为CO与RT混合部署情况提供了可能的解决方案。基本的思路是让ADSL2+频谱的形成(可能只需关闭子通道即可)能够对较低频率造成的串扰尽量最小化。由于环路较短,RT部署的ADSL2+系统即使只用较高子通道也能实现较合理的速率。与此相对应的是,CO部署的 ADSL 系统如果在长环路上由环路衰减限制于较低子通道,那么系统来自于RT部署的ADSL2+系统的串扰就会较少,因此仍能实现较合理的速率。 


串扰最小化

 

ADSL2遵循做现有系统(CO与RT混合部署是其实例)好邻居的原则,提供了更多串扰最小化的方法。这包括采用基于上限的功率缩减机制以去除功率,同时仍可保持相同的数据速率;还包括数据较少时减小传输功率的L2模式,并能够通过完全控制播放时间的位加载变化来进行反复迭代(iteraTIve waterfilling)以最小化串扰。


灵活的架构

 

对于长环路中各种干扰的补偿,根据通道不同部分上观测到的ISI可采用两条路径。EC可用于专为过渡带(这是回波最多的地方)设计的路径,而降低RFI的接收机窗口或TEQ设计可用于另一路径,因为上述干扰会出现在过渡带以外(见图1)。


对于上述干扰造成问题较小的较短环路,可将两条路径结合起来,使系统可处理的子通道数量加倍。假定TEQ可提供的每循环倍增数为常量,两个长度L TEQ中的每个都在每秒R采样率上工作,二者结合添加上最小的逻辑,则可得到在2R速率上工作的单长度L TEQ(将过滤操作拆分为两部分并使用延迟)。此外,TEQ输出的奇偶采样可路由至N大小的独立FFT,而两个FFT输出可结合在一起,再加上额外的蝶级(butterfly stage)以生成大小为2N的FFT(基本遵循时间FFT衍生抽取)。这样,就得到了一个能实现短环路高效、高速运行的调制解调器,并能够处理长环路的大量干扰(见图2)。

 

通过将灵活的调制解调器设计与 ADSL 新标准相结合扩大了 ADSL 调制解调器的覆盖范围。本文总结了补偿一般干扰的某些方法,加上 ADSL 传输频谱中的灵活性,从而可大大提高所有环路长度情况下的数据速率。

 


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。