发布时间:2022-05-11 阅读量:754 来源: 我爱方案网整理 发布人: Aurora
典型的多频段通信系统包括数据接口逻辑、现场可编程门阵列(FPGA)或专用ASIC、DAC、滤波器、增益模块和RF功率放大器。在通道卡内,DAC用作数字逻辑和RF模拟输出驱动网络之间的接口。DAC在系统中发挥着重要的作用,因为它的性能、采样速率和带宽都会影响系统架构和设计。
需重点关注某些关键电路——如DAC输出路径、时钟电路、传输线路、电源和返回路径——以确保它们的设计可实现最佳性能。可能需要对这些模块以及DAC印刷电路板(PCB)进行分析与仿真。
此外,电源布线也具有一定的挑战性。数字逻辑包括I/O和内核逻辑电源,而RF输出网络可包括多达四个或五个额外电源。电源域必须彼此隔离,信号返回路径应仔细管理,以确保电源域间无串扰。保持电源之间的隔离对于实现低噪声性能而言极为关键。
DAC主时钟是系统卡上最重要的信号。DAC时钟为差分信号,通过护栏与其他信号隔离。此外,控制返回路径,以确保无耦合或串扰。耦合至时钟的任何信号将直接出现在DAC输出端。破坏时钟的数字信号可减少系统内的噪声裕量。必须防止DAC输出耦合至时钟,否则将造成二次谐波,甚至可能造成输出频谱的其他谐波问题。时钟驱动器最好尽可能靠近DAC,以减少噪声和其他耦合问题。DAC输出通过传输线路连接到各自的负载。仔细控制这些连接负载的传输线路的阻抗,确保DAC输出信号具有可预测的性能。RF DAC的输出阻抗与封装和芯片有关,因此进行输出级的分析和仿真时必须考虑到层压板的影响。DAC与负载间的阻抗匹配非常重要,这是为了实现从DAC到目的地的最大能量传输,将从目的地返回DAC的反射降至最低。合理的传输线路设计可改善信噪比(SNR),对于优秀的多频段通信系统而言是必需的。
目前,典型的多频段通信系统包括多RF链,它们由IF DAC、正交调制器、带通滤波器、RF功率放大器和天线前的最终滤波器级组成。该架构要求极大的电路板面积,以便将多个频段集成到单个发射器中。如此多的元件功耗也非常大,并会产生相当多的热量,需通过散热片或风扇来散热,这使得整体系统设计的复杂程度和成本都有所上升。由于RF DAC具有足够的带宽来合成多个RF频段,因此它们可用来建立具有多频段输出的单个发射器。例如,三频段发射器可能需要使用三对IF DAC,而三个调制器和三个带通滤波器可用单个RF DAC和输出滤波器代替,从而生成全部三个频段。随着功率放大器的设计向更宽的带宽过渡,甚至可以节省更多电路板空间,因为只需在不同RF链上的功率放大器之后使用元器件即可,从而降低了所需元器件的数目。因此,采用RFDAC、DAC与功率放大器之间的输出滤波器、功率放大器以及功率放大器与天线之间的输出滤波器,便可实现多频段发射器。
测量结果
信号链
图3显示AD9129 RF DAC在2764.8 MSPS采样速率下的输出,采用DAC提供的可选模式,支持第二奈奎斯特区。八个5 MHz宽W-CDMA通道在三个不同频段内合成。建立两个1825 MHz至1835 MHz通道、两个1845 MHz至1855 MHz的通道,以及四个2130 MHz至2150 MHz的通道。信号在可编程门阵列(FPGA)内产生,然后由RF DAC直接合成。
图3. AD9129 RF DAC输出的频谱分析仪实测图(采样速率为2764.8 MSPS):a)第二奈奎斯特区中的8个5 MHz宽W-CDMA通道;b) 1825 MHz至1835 MHz的2个5 MHz宽W-CDMA通道;c) 1845 MHz至1855 MHz的2个5 MHz宽W-CDMA通道;d) W-CDMA通道之间两通道的间隙;e) 2130 MHz至2150 MHz的4个5 MHz宽W-CDMA通道
图4显示AD9129在2764.8 MSPS采样速率下的输出,使用的模式可在第一奈奎斯特区进行频率合成。带有四个LTE下游通道的四个5 MHz宽W-CDMA通道在两个不同的频段内合成。四个W-CDMA通道频率范围为871 MHz至891 MHz,建立的四个LTE下游通道频率范围为729 MHz至749 MHz。
图4. AD9129 RF DAC输出的频谱分析仪实测图(采样速率为2764.8 MSPS):a)第一奈奎斯特区中的4 MHz宽W-CDMA通道和4个5 MHz宽LTE通道;b) 729 MHz至749 MHz的4个5 MHz宽LTE通道;c) 871 MHz至891 MHz的4个5 MHz宽W-CDMA通道
现代无线通信网络要求使用灵活、易于升级的多频段、多标准基站。直接至RF发射器架构为多频段、多标准无线电发射器设计提供了高性价比解决方案。RF DAC技术的发展(比如ADI的AD9129)有助于降低多频段和多标准无线电设计的门槛,并展现了未来直接至RF架构应用于更多设计的发展前景。
在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。
随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。
对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。
在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。
其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!