采用RF DAC设计MB-MSR发射器时需要考虑的主要方面

发布时间:2022-05-11 阅读量:1077 来源: 我爱方案网整理 发布人: Aurora

无线通信网络正在迅猛发展。在多种空中标准共存的同时,消费者对数据服务需求的快速扩张呼唤更广的覆盖范围和更宽的带宽。不同的无线电技术以及不断增加的频率分配使控制网络和降低成本变得更为复杂。无线服务提供商正在寻求不仅能保护他们的现有投资,并且还能简化系统,以便未来网络升级和扩容的解决方案。


为了满足这些需求,必须通过有效且相对廉价的方案来解决多频段、多标准无线电(MB-MSR)基站构建问题。支持基站设计变革的技术进步之一是新一代射频数模转换器(RF DAC),比如ADI公司的AD9129。本文将论述采用RF DAC设计MB-MSR发射器时需要考虑的主要方面。 


传统发射器架构

 

图1(a)显示了一个广泛用于无线基站发射器设计的架构。同相(I)和正交(Q)输入数据经过数字调制,然后由DAC转换为一对中频(IF)I和Q输出信号。应当选择合适的IF,以便其数值足够高,使带通滤波器能够抑制调制镜像;而同时又足够低,使DAC能够保持良好的输出性能。该架构已成功应用于数代单频段无线电设计中。 


其优点和设计权衡因素已广为人知。然而,该架构有一些固有的限制,在规划多频段无线电设计中的频率时将会遇到诸多困难。图1(b)显示直接将此架构应用到多频段设计时经常会碰到的一种限制情形。在单频段无线电应用中,DAC输出端的信号谐波通常视为带外杂散信号,可由DAC之后连接的低通滤波器加以抑制。在双频段应用中,这些谐波可能会成为带内信号并进入较高的发射频段内。这一限制可通过图1(c)所示方法加以避免。这两个信号频段围绕复数域内的直流居中配置。谐波变为带外信号,可通过滤波消除。该方法对DAC采样速率和低通滤波器带宽的要求也更低,因为实际信号带宽较窄。虽然如此,这种频率规划下的调制器输出会产生问题。由于每个频段与本振(LO)的距离有所不同,每个信号的调制镜像将会在靠近另一频段处下降。虽然复杂的正交误差校正(QEC)算法有助于抑制该镜像,它可能对基带信号处理引擎造成额外的负担,因为当镜像落入带内时,模拟滤波技术不起作用。

 

传统发射器架构中的双频段无线电(频段1和频段3)频率规划示例:a) 发射器信号链组成; b) IF变频;c)直接变频

 

图1. 传统发射器架构中的双频段无线电(频段1和频段3)频率规划示例:a) 发射器信号链组成; b) IF变频;c)直接变频


直接至RF发射器架构

 

从架构的角度来说,DAC在无线电传输系统中扮演着关键的角色。DAC的速度和性能决定了执行数模转换时,其有多接近天线。RF DAC将数字信号处理的范围由基带频域扩展至天线。它实现了基带数字信号直接合成至最终输出频率,并事实上将传统架构的模拟上变频操作带进了数字域中。数字频率转换在频率规划和噪声等方面具有更高的灵活性和性能。这是MB-MSR设计特别引人入胜的地方。


使用RF DAC可更灵活地进行频率规划,因为数字调制非常理想,且不产生干扰信号的调制镜像。DAC采样时钟频率是进行频率规划时唯一需要确定的设计变量。图2显示采用RF DAC的直接RF频率合成架构,以及该架构在传统架构中可完美支持双频段应用的能力。本例中,双频段信号在最终传输频段中直接合成。选择DAC采样时钟频率,使信号谐波落在远离目标频段的位置,并且可在信号馈入下一个RF级之前加以过滤。


直接至RF发射器架构中的双频段无线电(频段1和频段3)频率规划示例:a) 发射器信号链组成; b) 直接至RF变频

 

图2. 直接至RF发射器架构中的双频段无线电(频段1和频段3)频率规划示例:a) 发射器信号链组成; b) 直接至RF变频


有两个原因使直接至RF架构的噪声性能更佳。第一个原因是无需使用模拟上变频级。在传统架构中,发射信号链的整体噪声系数通常由调制器噪声确定,因为DAC对调制器输出的噪声贡献相比折合到调制器输出端的噪底而言一般更低。移除调制级可让系统设计师降低系统噪声系数,方法是利用DAC的低噪底和RF放大器的高增益。噪底性能更佳的第二个原因是发射多频段信号时,天线的插入损耗更少。这是因为它不需要使用合路器。RF DAC合成多频段的能力改善了系统的整体性能,同时还降低了复杂程度,进而缩小了尺寸和成本。



相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。