带你深入理解LDO的原理

发布时间:2022-05-19 阅读量:1143 来源: 我爱方案网整理 发布人: Aurora

根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。此外,还有一种使用稳压管的小电源。这里说的线性稳压电源,是指调整管工作在线性状态下的直流稳压电源。而在开关电源中则不一样,开关管是工作在开、关两种状态下的。

 

简单介绍下分类:

 

NPN稳压管:内部用一个PNP管控制达林顿调整管。

 

LDO稳压管:调整管是一个PNP管。

 

Squasi-LDO:调整管是由一个PNP管控制一个NPN管。   

 

LDO(low drop output)低压差线性稳压器

 

LDO的工作原理是通过反馈调整MOSFET的Vsd压降以使输出电压不变。输出电压纹波小,电流也较小,用于RF模块或音频模块等对电压要求高的电路。特点是成本低噪音小。缺点是效率低,输出电流小,只能用在降压的场合。必须要注意,为了达到稳定的回路就必须使用负反馈。

 

下面是LDO S-1167 Series的基本原理图。


LDO S-1167 Series的基本原理图


该电路主要是由串联调整管、取样电阻、比较放大器组成。取样电压加在比较放大器的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和串联调整管回路反应速度的限制。环路内的负反馈总是强制比较放大器调节输入两端的电压使其相等。

 

LDO的效率不高,下表是3.3v的LDO量得的数据。 


3.3v的LDO量得的数据


在diag下效率为67.86%,在OS下效率为66.62%。输入输出电流基本相等,是因为输入电流到输出电流,经过PNP调整管,只在栅极消耗了一点。以S1167B33-I6T2G为例测得的输入输出曲线如下图:


以S1167B33-I6T2G为例测得的输入输出曲线


输入端大于3.3V时,一直有恒定的3.3V输出,大于2.8V小于3.3V时,输入等于输出,小于2.8V时,系统就不稳定了。把输出端对地短路,并未出现大电流(0.02mA)。6.5V是spec中定义的,由于怕损伤器件,输入并未超过6.5V测量。

 

稳压管的另一个重要的指标就是稳定性,在我们的设计线路中常常看到在其输出端会有大大小小的电容,其作用是什么呢?下面具体分析稳压管的反馈及回路稳定性。

 

前面提到过三中稳压管:

 

1. NPN稳压管


NPN稳压管


例如:LM340 LM317 比较老的3端稳压管

 

2.LDO稳压管


LDO稳压管


例如:S-1167 Series   

 

3.准LDO稳压器


准LDO稳压器


三种稳压器的最大区别在于压降和接地引脚电流。很明显NPN和准LDO的稳压管在调整管上稍微复杂点,所以压降也大些。达林管的增益很高,所以只需要很小的电流就可以驱动,准LDO也是这样,IGND很小。PNP管的放大系数一般是15-20,LDO的IGND电流能达到负载电流的7%。 NPN稳压管的最大好处就是无条件的稳定(大多数不需要加外接电容),LDO则需要在输出端加上电容,以减少回路带宽及提供些正的相位补偿。

 

所有的稳压器都使用负反馈回路以保持输出电压的稳定。但反馈信号在通过回路后都有一定的增益和相位变化。如果反馈信号相位有180度变化,负反馈就会变成正反馈,造成输出不稳定。因此反馈信号经过整个回路的相位偏移,需要有至少20度的相位裕度,这样才能保证电路的稳定。(相位裕度定义为回路总的相位偏移与-180度的差)

   

环路的不稳定来自于相位移量,我们可以在反馈回路中通过变压器注入正弦小信号,如下图所示,Loop Gain=Va/Vb,从Vb传入交流小信号,同过回路产生相移到达Va。这样可以计算回路增益,相位的偏移量。(此处以LDO分析)


回路中通过变压器注入正弦小信号


可以通过网络分析仪来测量回路增益,它通过向网络回路注入低电平的正弦波,然后从直流信号扫描到使增益下降到0dB的频率来测量增益的响应。下面以一幅波特图具体分析反馈回路的增益及相位变化情况。


反馈回路的增益及相位变化情况


概念:

 

极点 增益曲线出现-20dB/10倍频变化的点

 

零点 在增益与相位上的效果与极点相反。

 

极点相移=-arctan(f/fp)

 

零点相移=arctan(f/fz)   

 

假设直流增益为80dB(10-100Hz处的增益),100到1KHz增益减少了20dB,10K-100KHz增益减少20dB,100K-1MHz增益减少40dB(斜率有-20dB/10倍频的变化)。图中可以看出有3个POLE,一个ZERO。1MHz处的增益是0dB,说明1MHz的小信号在此截止,此回路的带宽就是1MHz。

 

从这个波特图能看出这个系统稳定么?前面说了系统是否稳定主要看相位移量,而我们只要看在0dB时的相移就可以了(图中是1MHz)。

 

上图中有3个极点和1个零点,前两个极点产生-180度相移,零点产生90度相移,最后一个极点在40dB到0dB处,斜率为-40dB/10倍频。根据极点相移公式-arctan(f/fp)=-arctan(10)=-1.47,换算成角度为-84.3度。所以总的相移为-180+90-84.3=174.2度。前面说到相位裕度等于|-180+174.2|=5.8<20.所以此回路不稳定。


补偿LDO稳压器


一般的LDO会由负载阻抗、输出容抗等自身产生一些极点。图中有3个极点(具体由来就不做分析,可由网络分析仪扫描出),但有1个Ppwr在0dB之后的频段,也就是带宽之外,可以不考虑。从上面两幅波特图的对比看出,第二张图增益曲线,当增加了输出电容后,从80dB到0dB变得更平缓些。系统的带宽大概从40KHz增加到100KHz左右。相位裕度也相应的增加(此例就不仔细计算了)。

 

那么系统对ESR又有什么要求呢?比如此例中设ESR=20ohm,则零点频率会降低到Fzero=800Hz,使系统的带宽增加到2MHz,从整个的波特图我们发现在100K到2MHz之间又多了一个极点Ppwr。这就意味着系统又有了-90度的相移,零点就失去了其意义。那么ESR是不是越小越好呢?设ESR=50mohm。零点频率会降到320kHz。不用看就知道,系统地稳定性基本没改变,因为系统的带宽就是40KHz,增加的零点频率为320KHz已经超出了带宽。   

 

为了补偿LDO稳压器的。所以选择的电容ESR要求要严格,首先要符合系统的回路频率特性,同时也要有较好的温度特性,不能随温度变化而变化过大。频率响应也是重要的指标。这点钽电容是比较好的选择。(ESR是指在一定温度下的某个频率下的最大阻值,厂商一般定义为25摄氏度100KHz) 


相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!