小型血糖监测仪的注意事项

发布时间:2022-06-2 阅读量:1002 来源: 我爱方案网整理 发布人: Aurora

据世界卫生组织的统计,全球糖尿病患者人数约为1.55亿,预计到2025年将增加至3亿。由于人体内血糖值的高或低都会严重威胁健康,因此采取预防和监测措施变得非常重要。所以,您可以想象,未来可能会有百万台个人便携式血糖监测仪(BGMs)的需求。


现代血糖监测仪需要在更小的尺寸内实现高度集成,以便人们携带。同时,为了满足患者的日常需求,该种高性能设备还需要具备只需少量血液就可准确测量血糖水平的功能。


血糖监测仪传感器前端的精密多路复用器无需糖尿病患者使用指尖进行多次测量。尽管多路复用器似乎只能处理在不同信号通道之间切换的简易工作,但实际上,它在准确测量从传感带接收到的信号方面起着重要作用。


选择正确的精密多路复用器可帮助设计小型血糖监测仪的工程师克服有关电流泄漏、电容导通和尺寸限制等方面的主要设计挑战。了解这些参数的重要性可帮助工程师更好地进行设计,而糖尿病患者可减轻疼痛并改善生活质量。


超低泄漏电流ILEAKAGE)


血糖监测仪使用试纸与患者的血液相互作用,产生化学反应,并借助特殊的传感带产生电流信号。该电流信号很小,通常可在跨阻放大器(TIA)级中转换为放大的电压信号。来自传感器带的电流信号通过可配置的增益设置被馈送到TIA,然后由模数转换器(ADC,通常处在微控制器内部)进行采样。


血糖监测仪模拟前端中的精密多路复用器使用示例


图1:血糖监测仪模拟前端中的精密多路复用器使用示例


图1所示为一个通道4:1多路复用器,为运算放大器(op-amp)的可配置增益切换四个不同的反馈元件。外部电阻器RF(如图1所示),或者利用四个通道中始终关闭的一个通道,可确保放大器不在开环配置下工作。尽管图1中所示为四个反馈电阻,但根据所需的不同增益设置,甚至可以增加或减少电阻数量


根据试纸的电流输出,这些增益设置是必须的,其范围可能在10µA至80µA之间,具体取决于血糖水平的高低。也可更改范围,以便在不同时间或针对不同患者测量血糖水平。


为此,设计人员不仅需要低导通电阻(RON),而且还需超低泄漏多路复用器来提高ADC精度。


原因很简单:当开关接通时,来自多路复用器的泄漏电流会加到来自传感带的电流信号中,并流经反馈电阻,从而导致在运算放大器的输出端提供错误读数。然后,此错误输出电压值会馈送到ADC,这使得ADC在转换为数字信号进行处理时会在显示屏上显示不精确的读数。 


所以,综上所述,多路复用器的漏电流越小,输出端获得的读数就越精确。


TI已发布一系列满足超低泄漏要求的精密多路复用器。TMUX1104(在图1中突出显示)提供了极低的导通泄漏(25°C时为3pA-TYP和50pA-MAX)。由于超低漏电流,TMUX1104能够将信号从高源阻抗输入切换到高输入阻抗运算放大器,且具有最小的偏移误差。


低电容CON)


影响血糖监测仪应用中多路复用器性能的另一个重要参数是导通电容CON。CON会影响多路复用器的沉降性能,从而影响系统的瞬态性能。


忽略多路复用器的CON规范时,TIA电路可能会出现稳定性问题。多路复用器的CON可能会引起振荡,从而导致信号链的瞬态性能较差。尽管系统设计人员可能不会有意在设计中增加电容,但多路复用器的CON可能足够大,以至于影响系统。


选择低CON的多路复用器可帮助最大限度地减少由这些常见电路挑战引起的问题。当多路复用器通道导通时,多路复用器的CON代表系统看到的等效于接地的电容。模拟多路复用器的CON典型值范围从几十微微法拉(pF)到超过400pF不等。但是,TMUX1104器件的CON低至35pF。


如果使用四通道单刀单掷(1:1)开关进行可配置的增益控制,如图2所示,则每个单独通道都有自己的CON。当所有通道导通时,CON将并联放置。保持四个通道中的一个通道始终关闭可确保放大器不在开环配置下工作。如果未选择多路复用器来优化导通电容,则1:1开关的单个通道通常可具有70pF的电容。因此,在所有四个通道均导通的情况下,反馈路径的总CON将为280pF。相反,如果使用仅具有35pF CON的TMUX1104,则在所有通道都导通的情况下,总反馈电容仅为140pF。


可配置的增益控制


图2:可配置的增益控制


小型血糖监测仪的注意事项


无论是手机、笔记本电脑还是平板电脑,更智能、更小、更轻的解决方案是大势所趋。血糖监测仪等便携式医疗设备也是如此。患者更喜欢可提供精确读数且易于携带的小型血糖监测仪。这给设计人员寻找精确、小巧的新型解决方案时带来了挑战。


TMUX11x精密多路复用器系列支持采用小引线和无引线封装的宽工作电源(1.08V至5.5V单电源或±2.5V双电源)。这些器件具有极低导通电流、低CON和小封装选项,使其可用于需要高精度测量的便携式医疗应用。TMUX1104是业界最小的单通道4:1精密多路复用器之一(如图3所示)。该器件具有超低泄漏电流(3pA_TYP)和8_nA的低电源电流,极其适合诸如由电池供电的血糖监测仪等便携式医疗应用。


TMUX1104DQA(10-USON封装)


图3:TMUX1104DQA(10-USON封装)


设计精确的血糖监测仪时,无需权衡系统的精确性或稳定性。只需在传感器前端选择一个具有极低泄漏电流、低CON并采用小封装的精密多路复用器即可。

 


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。