影响光电式心率传感器设备测量的主要因素

发布时间:2022-06-20 阅读量:1696 来源: 我爱方案网整理 发布人: Aurora

光线干扰

 

事实上,光电式心率测量设备最大的技术障碍是如何将生物特征信号从干扰中分离出来,特别是运动干扰。不幸的是,当把光线射入一个人的皮肤时,只有一小部分光量子返回给传感器,并且收集的所有光量子,只有百分之一或千分之一是由心脏收缩的血流量调节的,剩下的都分散在非搏动性生理物质上,例如皮肤、肌肉、肌腱等等。因此,当这些非搏动性生理物质四处移动,比如在锻炼或者日常生活活动中,由此导致的光线随着时间变化运动躁动分散是很难从光线随着真实血流量的分散中区分出来的。周围光线干扰还加剧这个问题的严重性,比如随着时间的变化,太阳光的干扰可以完全渗透到光电探测器中,甚至创造出近似生理性质的脉动信号。

 

1655697373686108.png

 

肤色

 

人类拥有非常多种不同的漂亮肤色,多到以至于菲氏量表为肤色数值分类和对紫外线的反应而提供了7个类型的标准。不同的肤色对光的吸收是不同的,因此每一种肤色的特点在于都有不同的吸光图谱。那么,这意味着光电式心率测量设备传感器捕获的光的强度和波长是取决于穿戴传感器的人的肤色的。例如,深色皮肤吸收绿色光较多,这也表明了为什么大多数设备采用绿色LED作为光线发射器,限制了透过深色皮肤准确测量心率的能力的问题。这同样暴露出透过纹身的皮肤测量心率的问题,这也是苹果被人们诟病的“纹身门”,手腕有纹身的苹果手表用户发现显示屏上的数据显示非常微弱,甚至没有。


1655697377362457.png

 

交叉问题

 

光电式心率监测器存在由于周期性活动期间的运动而产生的交叉干扰方面的问题,这个问题面临的最大的挑战是这种活动带来持续性的相同重复的动作。这点在记录慢跑和跑步期间的步伐频率时最常见,因为这些数据通常与心跳频率(140-180下/步数每分钟)处于同一个基本区间里。许多光电式心率监测设备面临的这个问题使得运算法则很容易将通过光电监测数据录入的步伐速率错误解读成心率。这就是为人所知的“交叉问题”,因为在图表上查看这些数据时,当心率和步伐速率发生重叠,许多光电式心率监测设备倾向于锁定步伐速率并将其显示为心率,尽管心率可能会在重叠后发生巨大改变。这个交叉干扰的问题在苹果表上体现很明显。


1655697382815533.png

 

和其他腕部的光电式心率测量设备技术相比,很明显苹果表在“交叉”时显示的心率监测失败,标签1到4人的步伐速率和心率相似,苹果的数字信号不能将它们区分开来。第2处交叉有超过两分钟把心率读成了步伐速率。

 

传感器在人体上的位置

 

设备在人体上使用时面临的独有的挑战是位置的不同会导致测量数据产生显著的区别。最主要集中在三个部位:

 

1、耳朵--在音频耳塞里

 

2、胳膊--在上臂臂章上部或者下臂上

 

3、手腕--在智能手表或者运动追踪器上

 

事实表明,腕部是最不能做到精确测量的部位之一。因为这个区域(肌肉、肌腱、骨头等等)会产生更高的光线干扰,并且血管结构有高度的变异性。前臂部位被认为是更好的选择,因为在那里的皮肤表面有更高的血管密度。然而,对于光电式心率监测设备来说,耳朵是至今为止被认为最佳的部位。因为那里只有软骨和毛细血管,即使身体在运动也不会移动太多,因此大大减少了必须被过滤的光线的干扰。特别是,密集的动脉集合存在于抗耳屏耳和外耳之间。

 

1655697388507763.png

 

上图表明生物识别耳机和胸带都能很好的排列,而腕部的光电式心率测量设备则做不到。

 

低灌注

 

灌注是身体将血液运送到毛细血管床的过程。在肤色上,不同种族之间灌注的水平是有极大差别的,像肥胖、糖尿病、心脏疾病和动脉疾病等问题都会降低血液灌注水平。低水平灌注,特别是在四肢上,会对光电式心率监测设备形成挑战,因为信号和干扰的比率可能会大幅降低,低水平灌注和低水平的血流信号是相关联的。不幸的是,低水平灌注在当今社会太常见了。所以,这也是一个很大的问题。幸运的是,在大多数由于低水平灌注导致光电式心率监测设备失败的案例中,心脏信号会在几分钟的热身后重新恢复,即开始动脉血流流入毛细血管和小动脉的新循环。

 

光学式心率传感器使用时的注意要点

 

尽管现在市场上绝大部分的心率测量穿戴设备都采用的是PPG的测量原理,无论是从测量还是使用上来看都比较方便。但唯独在测量精度、稳定性方面却时常表现得不尽如人意,误差较大。


1655697393840977.png

 

在腕带式心率测量设备的使用过程中,通常会要求携带者佩戴严实,以避免漏光而使得环境光线对测量产生干扰。

 

此外,皮肤的颜色、毛发和汗液也多多少少会对测量造成影响。一般来说,肤色越深的人光线越是难以穿透。而肤色越浅的人,反射光则在明亮的光束下又越容易散掉。为此,我们也从用户反馈中窥得其中端倪。一位Samsung Gear 2的黑人用户表示:肤色深的人根本用不了!我肤色还不算最深的,但是设备却没有一次能正常工作。而当我把传感器移到指尖(手上肤色较浅的地方),设备就能好好运作。

 

影响光学心率测量设备精度的还有另一个重要因素,那就是测量点的选择。由于腕部毛细血管狭窄,当血液循环至此时,流速已经慢了下来,无法真实反映及时心率。从上面的一个例子不难发现,人体指尖也是准确测量心率的一个绝佳位置。甚至有实验显示,在指尖处测量心率的精度要比手腕处高。这主要是因为指尖有一条直通心脏的动脉血管,血液的流速紧随心脏每一次的怦动。而指尖皮肤呈半透明,有利于光的穿透,这进一步方便了光学传感器在指尖的读数。

 

 


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。