直流电弧检测

发布时间:2022-06-24 阅读量:1083 来源: 我爱方案网整理 发布人: Aurora

由于光伏(PV)太阳能面板设施可能发生新的危险,尤其是火灾,所以未来的太阳能设计要求光伏系统具备电弧检测能力。本文说明了电弧检测需求的产生原因,对检测方法进行分析,并提出了一种可能的解决方案来将电弧检测集成到光伏逆变器设备和设施中。
    

当今的太阳能光伏设施使用的逆变器有两类:微逆变器和组串式逆变器。微逆变器仅转换一个面板产生的电力,而组串式逆变器转换多个面板或一串面板产生的电力。本文重点讨论组串式逆变器类型的设施。这些设施中的功率逆变器系统将面板输出的直流电源转换为交流电流,以便可以直接在家中使用、储存于电池系统中或送回电网。在典型的住宅太阳能光伏设施中,屋顶的各个光伏模块串联连接,形成光伏串,并进而连接到可以处理两到四个光伏模块串的组串式逆变器。此外,针对家庭使用、电池储能或电网等不同情况,逆变器内部的最大功率点跟踪器(MPPT)优化光伏面板与输出之间的匹配度。
  

电弧是太阳能光伏和其他电流转换应用中可能发生的一种危险情况,有引发火灾的风险。对潜在起弧情况的检测和反应(系统关停)是此类系统必须具备的一项关键安全特性。太阳能逆变器的直流侧和交流侧均可能产生电弧。
  

例如,当电缆中有大电流通过时,断开这样的电缆可能引起直流电弧。另外,在太阳能电池发生辐照的同时,光伏阵列会持续供应电流,这使问题进一步复杂化,可能引发连续起弧,导致火灾。因此,光伏逆变器的直流侧非常容易发生危险。虽然逆变器有断开太阳能面板连接的要求,但这只是用于维护,而非正常工作。
  

在应用的交流侧,电弧在过零时可能会自动熄灭,过零事件每50 Hz或60 Hz发生一次,故而光伏逆变器的交流侧不大容易产生电弧相关的风险。另外,市场上有电弧故障断路器(AFCI),用于检测交流电路中的电弧故障。
  

因此,电弧检测对太阳能光伏逆变器确实非常重要。
  

电弧检测应考虑检测光伏逆变器中的故障,并且仅关断受影响的逆变器区域以确保设备安全运行,逆变器的其余部分则照常安全工作。此外还应基于电弧相关性质,考虑光伏逆变器的启动或关断操作。
  

直流电弧检测——研究
  

挪威科技大学(NTNU)研究显示,30 V的电压即足以引起并维持电弧。他们的测试方法聚焦于电压域以检测电弧。他们还观测到,当电弧燃烧时,光伏模块上的电压(典型值为60 V)下降。根据他们的电弧测试,压降幅度约为10 V。电压域分析的主要原因是实验中使用了一个低成本微控制器。若非如此,他们建议使用更强大的DSP对电流信号的功率谱密度进行分析。
  

2007年,Swissolar在瑞士组织了一次名为“光伏直流阵列中的电弧——潜在危险和可能的解决方案”国际研讨会,介绍了关于直流电弧对MPPT跟踪的影响的一些有意义的情况,并建议未来的电弧检测机制应重点考虑这些情况。


1656038043888177.png


图1.电弧对MPPT的影响(Willi Vaassen,TÜV)
  


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。