电池管理系统如何工作?

发布时间:2022-06-28 阅读量:2394 来源: 我爱方案网整理 发布人: Aurora

之所以成为业内佼佼者,一定程度上得益于强大的电池管理系统。只有对复杂而繁多的电池组进行有效的控制与管理,才能突破电动汽车推广普及的瓶颈。一起来看看电池管理系统如何工作。


1656379753610689.png


图1安全工作区域示意


1电池管理系统(BMS)定义

 

锂离子电池的安全工作区域如图1所示。BMS的主要任务是保证电池系统的设计性能:1)安全性;;2)耐久性;3)动力性。

 

BMS软硬件的基本框架如图2所示,应该具有的功能:1)电池参数检测。2)电池状态估计。3)在线故障诊断。4)电池安全控制与报警。5)充电控制。6)电池均衡。7)热管理。8)网络通讯。9)信息存储。10)电磁兼容。

 

1656379759561290.png


图2车用BMS软硬件基本框架


2电池管理系统关键技术

 

2.1电池管理系统对传感器信号的要求

 

2.1.1单片电压采集精度

 

一般地,为了安全监控,电池组中的每串电池电压都需要采集。不同的体系对精度的要求不一样。


1656379765510016.png


图3单体电池OCV曲线及其电压采集精度要求


对于LMO/LTO电池,单体电压采集精度只需达到10mV。对于LiFePO4/C电池,单体电压采集精度需要达到1mV左右。但目前单体电池的电压采集精度多数只能达到5mV。

 

2.1.2采样频率与同步

 

电池系统信号有多种,而电池管理系统一般为分布式,信号采集过程中,不同控制子板信号会存在同步问题,会对实时监测算法产生影响。设计BMS时,需要对信号的采样频率和同步精度提出相应的要求。2.2电池状态估计电池各种状态估计之间的关系如图4所示。电池温度估计是其他状态估计的基础。


1656379771734786.png


图4电池管理系统算法框架


2.2.1电池温度估计及管理

 

温度对电池性能影响较大,目前一般只能测得电池表面温度,而电池内部温度需要使用热模型进行估计。根据估计结构对电池进行热管理。

 

1656379776334557.png


图5电池内部温度估计流程


2.2.2荷电状态(SOC)估计

 

SOC算法主要分为单一SOC算法和多种单一SOC算法的融合算法。单一SOC算法包括安时积分法、开路电压法、基于电池模型估计的开路电压法、其他基于电池性能的SOC估计法等。融合算法包括简单的修正、加权、卡尔曼滤波以及滑模变结构方法等。

 

卡尔曼滤波等基于电池模型的SOC估计方法精确可靠,是目前的主流方法。

 

2.2.3健康状态(SOH)估计

 

SOH是指电池当前的性能与正常设计指标的偏离程度。图6为电池性能衰减原理简单示意图。目前SOH估计方法主要分为耐久性经验模型估计法和基于电池模型的参数辨识方法。

 

1656379782126984.png


图6锂离子电池双水箱模型


2.2.4功能状态(SOF)估计

 

估计电池SOF可以简单认为是在估计电池的最大可用功率。常用的SOF估计方法可以分为基于电池MAP图的方法和基于电池模型的动态方法两大类。

 

2.2.5剩余能量(RE)或能量状态(SOE)估计

 

RE或SOE是电动汽车剩余里程估计的基础,与百分数的SOE相比,RE在实际的车辆续驶里程估计中的应用更为直观。


1656379788138148.png


图7电池剩余能量(RE)示意


图8是一种适用于动态工况的电池剩余放电能量精确预测方法EPM(energypredictionmethod)。

 

1656379795703079.png


图8电池剩余放电能量预测方法(EPM)结构


2.2.6故障诊断及安全状态(SOS)估计

 

故障诊断是保证电池安全的必要技术之一。安全状态估计属于电池故障诊断的重要项目之一,BMS可以根据电池的安全状态给出电池的故障等级。

 

2.2.7充电控制

 

充电析锂是影响电池寿命的主因,目前对于析锂的机理已经有了研究,基于析锂状态识别的充电管理将是今后的主要研究方向,应在保证电池负极不发生析锂情况下,尽可能增大充电电流,缩短充电时间。

 

2.2.8电池一致性与均衡管理

 

单体电池的不一致性将最终影响电池组的寿命,主要是由单体电池容量衰减差异(不可恢复)和荷电量差异两者造成。后者可以通过均衡方法来补偿。

 

电池均衡算法分为基于电压一致的均衡策略、基于SOC一致的均衡策略和基于剩余充电电量的均衡策略。最后一种均衡算法约束较宽、效率较高(图9)。


1656379802932983.png

 

图9基于剩余充电容量的耗散式均衡的示意


3结论

 

锂离子电池管理系统的基本研究方法为:

 

1) 对锂离子电池机理进行研究,深入了解电池性能演变过程;

 

2) 对锂离子电池性能进行测试研究,确定影响电池性能的主次因素及规律;

 

3) 采用基于机理、半经验或经验的建模方法,建立电池管理系统可实际应用的电池系统模型;

 

4)在运行过程中,根据可采集的数据,采用在线或离线识别电池系统参数,估计出电池状态(SOC、SOH、SOF、SOE及故障),并通过网络通知整车控制器,保证车辆安全可靠运行。

 


相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!