二极管温度检测电路的缺陷及改进

发布时间:2022-09-13 阅读量:1392 来源: 我爱方案网整理 发布人: Aurora

过热保护电路对于功率集成电路而言有着十分重要的意义,所谓功率集成电路就是指有一定负载能力,有较高电压输入输出的芯片,它主要应用于电气照明设备中。功率集成电路不同于一般的芯片在于在同一块芯片里不但集成了低压数字或模拟电路,也集成了高压功率输出电路。正是因为有高压功率输出部分,功率集成电路发热量比较大,所以,才有必要对其进行过热保护,以免烧坏整个芯片。

 

本文介绍了一种过热保护电路。如何把温度信号转变为电压信号是设计过热保护电路的关键。按照传统的方法,传感器可以用热电偶、热电阻来做,但是如果要应用于集成电路中,考虑到以上2 种方法不容易集成,因此,不能采用。集成电路中的过热保护电路一般是利用二极管、三极管的温度特性来做传感器。  

 

二极管温度检测电路及其原理  

 

考虑到二极管的伏安特性对于温度比较敏感,因此,可以利用二极管来做传感器。  

 

由二极管特性曲线可知,随温度升高正向特性曲线向左移,反向特性曲线向下移。其变化规律是:在室温附近,温度每升高1 ,正向压降减小22.5 mV ;温度每升高10 ,反向电流约增大1 倍。二极管的这种特性为负温度特性。  

 

二极管在20~150 ℃温度范围内很好的保持着这一特性。通过不断试验,并运用统计规律,可以取其值为- 2. 2 mV/ ,即温度每上升1 ,认为二极管正向电压下降2. 2 mV ,而温度每下降1 ,其正向电压上升2. 2 mV。二极管这种良好的温度特性,说明它本身就是一个很好的温度传感器,而且容易集成。可以通过测量其正向电压的变化而计算其温度变化,从而可以很好的控制过热保护电路。二极管温度检测电路如图1 所示。  

  

二极管温度检测电路

 

利用二极管导通电压会随温度的升高而下降( - 2. 2 mV/ ℃) 的特性,采用将4 个二极管串联作为温度传感器(- 8. 8 mV/ ) M9 ,M10 ,M11是镜像电流源组成的恒流源,4 个二极管提供电流。芯片整个工作时,随着温度的升高, V 点电压就会下降。只要检测V 点电压就能知道当前的温度状况。这个电路就完成了把温度信号转变为电压信号的任务。以下是这个电路的仿真结果。  

 

温度为50 ℃时的V 点电压: V = 2. 4 V ;温度为120 ℃时的V 点电压: V = 1. 78 V.有了V 点的电压信号,再作处理就方便许多。不妨设计一个迟滞比较器,其输入端低于1. 78 V 就输出高电平信号(可以定义高电平为保护信号) ,其输入端高于2. 4 V 就输出低电平信号,即解除保护。这就相当于温度超过120 ℃时进行保护,当温度恢复到50 ℃时再解除保护,重新工作。  

 

至于迟滞比较器的设计,在此不多赘述, 。不过建议使用模拟式的,数字式的施密特触发器虽然也有滞回曲线,但调试起来比较困难,因为施密特触发器的上跳变点V T + 和下跳变点V T - 都和阈值电压V TH有关,V TH是随着温度的变化而变化的。而模拟式的迟滞比较器的回差电压值只和参考电压和内部MOS 管的尺寸有关,和温度无关,容易调节。过热保护电路的方框图如图2 所示。   

 

过热保护电路

 

仿真结果几乎丝毫不差,非常令人满意。  

 

二极管温度检测电路的缺陷及改进  

 

过热保护电路的另一个关键在于电路只受温度变化的影响,不受电压变化的影响。完全不受电压变化影响的理想情况是不可能出现的,就要想办法让电路尽量少受电压变化而带来的影响。  

 

再来分析以上温度检测电路,把电压源由原来的5 V 改为46 V 之间变化的三角波,考察V 点的波形可知,120 ℃的曲线误差为0. 1 V ,折算成温度就有10 ℃的误差。50 ℃的曲线误差就有几十摄氏度。因此,有必要对此进行改进。  

 

解决电压波动的常用方法是加1 个稳压管。硅稳压管在4 V 以下是负温度系数,7 V 以上是正温度系数,47 V 之间的温度系数很小,可以忽略不计。改进后的电路如图3 所示。  

 

由仿真结果可见,加了稳压管之后,电路性能大大改善,只不过50 ℃和120 ℃时V 点的电压值也有所改变,50 ℃时为2. 16 V ,120 ℃时为1. 535 V。这样就彻底解决了电压波动的问题。

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。