如何在过压条件下保护 ADC输入?

发布时间:2022-09-28 阅读量:1082 来源: 我爱方案网整理 发布人: Aurora

在设计ADC电路时,一个常见的问题是“如何在过压条件下保护 ADC输入”,那么在过压情形中可能出现哪些问题呢?发生的频率又是怎样的呢?有木有潜在的补救措施呢?

 

针对上述问题,让我们进行一次深入分析吧!  

 

ADC输入的过驱一般发生于驱动放大器电轨远远大于ADC最大输入范围时,例如,放大器采用±15 V供电,而ADC输入为05V。高压电轨用于接受±10 V输入,同时给ADC前端信号调理/驱动级供电,这在工业设计中很常见,PLC模块就是这种情况。如果在驱动放大器电轨上发生故障状况,则可因超过最大额定值而损坏ADC,或在多ADC系统中干扰同步/后续转换。  

 

这里讨论的重点虽然是如何保护精密SAR ADC,如AD798x系列,但是,这些保护措施同样适用于其他 ADC类型哦~  

 

试考虑图1中的情形。  

 

精密ADC设计的典型电路图

 

图1. 精密ADC设计的典型电路图  

 

上图电路代表AD798X(例如AD7980)系列PulSAR® ADC中的情形。输入端、基准电压源和接地之间存在保护二极管。这些二极管能够处理最高130mA的大电流,但仅能持续数毫秒,不适用于较长时间或重复过压。在一些产品上,例如AD768X/AD769x(如 AD7685AD7691)系列器件,保护二极管连接至VDD引脚而不是 REF。在这些器件上,VDD电压始终大于或等于REF。一般而言,此配置更有效,因为VDD是更稳定的箝位电轨,对干扰不敏感。  

 

图1中,如果放大器趋向+15 V电轨,则连接至REF的保护二极管将开启,放大器将尝试上拉REF节点。如果REF节点未通过强驱动器电路驱动,则REF节点(及输入)的电压将升至绝对最大额定电压以上,一旦电压在该过程中超过器件的击穿电压, ADC可能受损。图3举例说明了ADC驱动器趋向8 V而使基准电压 (5 V)过驱的情况。许多精密基准电压源无灌电流能力,这在此情形中会造成问题。或者,基准驱动电路非常强劲,足以将基准电压保持在标称值附近,但仍将偏离精确值。  

 

在共用一个基准电压源的同步采样多ADC系统中,其他ADC上的转换不精确,因为该系统依赖于高度精确的基准电压。如果故障状况恢复时间较长,后续转换也可能不精确。  

 

缓解此问题有几种不同方法。最常见的是使用肖特基二极管(BAT54系列),将放大器输出钳位在ADC范围。相关说明详见图2和图3。如果适合应用需求,也可使用二极管将输入箝位在放大器。   

 

精密ADC设计的典型电路图

 

图2. 精密ADC设计的典型电路图 (添加了肖特基二极管和齐纳二极管保护)  

 

在此情况中,之所以选择肖特基二极管,是因为其具有低正向导通压降,可在ADC内的内部保护二极管之前开启。如果内部二极管部分开启,肖特基二极管后的串联电阻也有助于将电流限制在ADC内。对于额外保护,如果基准电压源没有/几乎没有灌电流能力,则可在基准节点上采用齐纳二极管或箝位电路,以保证基准电压不被过度拉高。在图2中,为5V基准电压源使 用了5.6V齐纳二极管。

  

黄色 = ADC输入,紫色 = 基准电压源。左侧图像未添加肖特基二极管,右侧图像添加了肖特基二极管

 

图3. 黄色 = ADC输入,紫色 = 基准电压源。左侧图像未添加肖特基二极管,右侧图像添加了肖特基二极管   

 

黄色 = ADC输入,绿色 = ADC驱动器输入,紫色 = 基准电压源(交流耦合) 左侧图像未添加肖特基二极管,右侧图像添加了肖特基二极管(BAT54S)

 

图4. 黄色 = ADC输入,绿色 = ADC驱动器输入,紫色 = 基准电压源(交流耦合) 左侧图像未添加肖特基二极管,右侧图像添加了肖特基二极管(BAT54S)  

 

图4中的示例显示了以正弦波使ADC输入过驱时,给ADC输入添加肖特基二极管后对基准输入(5 V)的影响。肖特基二极管接地,5 V系统电轨能够吸电流。如果没有肖特基二极管,当输入超过基准电压和地电压一个压降时,就会出现基准电压源干扰。从图中可看到,肖特基二极管完全消除了基准电压源干扰。  

 

需要注意肖特基二极管的反向漏电流,此电流在正常运行期间可引入失真和非线性。该反向漏电流受温度影响很大,一般在二极管数据手册中指定。BAT54系列肖特基二极管是不错的选择(25°C时最大值为2μA125°C时约100μA)。  

 

完全消除过压问题的一种方式是为放大器使用单电源电轨。这意味着,只要为基准电压(最大输入电压)使用相同电源电平(本例中为5V),驱动放大器就绝不会摆动至地电压以下或最大输入电压以上。如果基准电路具有足够的输出电流和驱动强度,则可直接用来为放大器供电。图5中显示了另一种可能性,也就是使用略低的基准电压值(例如,使用5 V电轨时为 4.096 V),从而显著降低电压过驱能力。 

  

单电源精密ADV设计的典型电路图

 

图5. 单电源精密ADV设计的典型电路图  

 

这些方法可解决输入过驱的问题,但代价是ADC的输入摆幅和范围受限,因为放大器存在上裕量和下裕量要求。通常,轨到轨输出放大器可在电轨十几mV内,但也必须考虑输入裕量要求,可能为1 V或更高,这会将摆幅进一步限制在缓冲器和单位增益配置内。该方法提供了最简单的解决方案,因为不需要额外保护元件,但依赖正确的电源电压,可能还需要轨到轨输入/输出(RRIO)放大器。  

 

放大器与ADC输入之间的RC滤波器中的串联R也可用于在过压状况期间限制ADC输入处的电流。不过,使用此方法时需要在限流能力与ADC性能做出取舍。较大的串联R提供较佳的输入保护,但会导致ADC性能出现较大失真。如果输入信号带宽较低,或者ADC不在满吞吐速率下运行,这种取舍可行,因为此情况下串联R可以接受。应用可接受的R大小可通过实验方式确定。  

 

如上文所述,保护ADC输入没有成法,但根据应用要求,可采用不同的单独或组合方法,以相应的性能取舍提供所需的保护水平。

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。

拥有卓越性能的高精度超薄低功耗心电贴—YSX211SL

随着医疗技术的进步,心电监护设备在日常生活和医疗领域中起到了至关重要的作用。而无源晶振 YSX211SL 作为一种先进的心电贴产品,以其独特的优势在市场上备受瞩目。

可编程晶振选型应该注意事项

对于可编程晶振选型的话,需要根据企业的需求选择。在选择可编程晶振的时候注重晶振外观、晶振的频率、晶振的输出模式、晶振的型号等等,这些都是要注意的,尤其是晶振的频率和晶振输出模式以及晶振的型号都是需要注意的。

性能高的服务器—宽电压有源晶振YSO110TR 25MHZ,多种精度选择支持±10PPM—±30PPM

在现代科技发展中,服务器扮演着越来越重要的角色,为各种应用提供强大的计算和数据存储能力。而高品质的服务器组件是确保服务器稳定运行的关键。YSO110TR宽电压有源晶振,作为服务器的重要组成部分,具备多项优势,成为业界必备的可靠之选。

差分晶振怎么测量

其实对于差分晶振怎么测量方式有很多种,主要还是要看自己选择什么样的方式了,因为选择不同的测量方式步骤和操作方式是不同的。关于差分晶振怎么测量的方式,小扬给大家详细的分享一些吧!