3种常见的射频收发架构分析

发布时间:2022-11-18 阅读量:1496 来源: 我爱方案网整理 发布人: Aurora

关于接收机结构我们从最传统的超外差结构开始介绍,超外差结构能提供非常好的性能,但这种结构需要大量分离元件,像滤波器、混频器、放大器等。由于小型化、个性化等等商用的需求,出现了零中频和低中频接收机结构,同时软件无线电(SDR)技术也为射频微波的发展提供了新的方向,随着开放的商用频率越来越多,越来越多的企业集中力量开发属于自己的SDR

 

No1 超外差结构 Superheterodyne Architecture  

 

目前大多数的无线通信系统都选用了超外差结构,比如在2G,3G4G通信系统中,我们最常见的就是这种超外差收发机。这种结构相较于其他结构来说有着比较好的性能表现。但在5G上,更常用的是结构更简单的零中频结构,因为。  

 

我们首先来了解一下超外差架构的历史。它是在一战期间和刚结束时Edwin Howard Armstrong发明的,并于 1918 年获得专利。这个人最牛逼的地方是,当时还在读高中时,就开始研究无线电,在他位于纽约扬克斯 (Yonkers) 的父母家中竖起了一根 125 英尺高的无线电桅杆,以接收当时微弱的无线电信号。1912 年还在上大学时,他发明了基于 Lee de Forest 三端音频管的反馈电路,提供了第一个可用的电放大器,并于 1913 年提交了再生接收器的专利,并且在1918年发明了超外差接收机,同时发明了FM广播。  

    

3种常见的射频收发架构分析

 

说到超外差架构,可能很多同学对”超外差“这个词不是很理解。我也是一直纳闷,为什么叫外插,是不是还有内插。外差这个词是Reginald Aubrey Fessenden1901年提出来的,他将混频产生新的信号的想法称为”外差“,并且给出了具有一次混频结构的接收机架构称为外差接收机,如下图所示:它需要一个混频器将调制的射频信号带入调制的中频信号,该信号应用于 I/Q 解调器,将调制的低中频带入零中频的基带。

     

3种常见的射频收发架构分析

 

Armstrong 对外差接收机进行了改进,发明了超外差接收机。超外差,就是具有两次和两次以上混频结构的接收机,如下图所示。在超外差接收机中,需要两个混频器将调制的射频信号变成调制的中频信号。第一个混频器将 RF 信号带入高 IF 信号,而后一个混频器将高 IF 信号带入低 IF 信号。这适用于 I/Q 解调器,它将低中频信号变为零中频基带信号。

     

3种常见的射频收发架构分析

 

了解了外差和超外差的基本结构外,我们介绍在无线通信系统中常用的超外差收发机的结构图,下图所示。在超外差接收机链路中,通常包括射频RF部分,中频IF部分和基带BB部分。

    

3种常见的射频收发架构分析

 

接收器的 RF 部分包括作为频率预选器的双工器、低噪声放大器 (LNA)RF 带通滤波器 (BPF)、作为混频器前置放大器的 RF 放大器和 RF-to-中频下变频器(混频器)。  

 

下变频器之后是一个 IF 放大器 (FA),然后是一个 IF BPF,用于通道选择和抑制不需要的混频产物。  

 

I/Q 解调器是第二个频率转换器,它将信号频率从 IF 下变频到 BB。解调器包含两个混频器,它将 IF 信号转换为 I Q 信号——即两个 90" 相移的 BB 信号。低通滤波器 (LPF) 在每个通道的 I Q 中跟随混频器,以滤除不需要的混频产物并进一步抑制干扰。滤波后的 I Q BB 信号由 BB 放大器放大,然后 ADC 将放大后的 BB 信号转换为数字信号,以便在数字基带中进一步处理。与超外差接收机类似,超外差发射机也由BBIFBB三部分组成。  

 

中频部分的增益控制大概占整个增益控制范围的 75% 或更多。在这种无线电架构的模拟 BB 部分中实现增益控制的情况很少见。其原因是接收器或发射器中的 BB 部分具有 I Q 两个通道,并且很难在 BB 增益变化范围内将 I Q 通道幅度不平衡保持在允许的容差内。  

 

No.2 直接变频/零中频架构 Direct Conversion (Zero-IF)  

 

上文介绍了具有混频模块的超外差接收机,那是不是不用混频模块也可以,于是射频科学家在1980年左右开始使用直接变频的无线电收发机。直接变频意味着射频信号不需要经过中频阶段直接进入I/Q解调,变换到基带信号,中间不产生中频信号,因此也叫做零中频接收机,如下图所示。   

 

3种常见的射频收发架构分析

 

如图所示,LO(本地振荡器)频率设置为所需要的频率,因此接收信号直接转换为基带 I(同相)和 Q(正交相位)信号。在此架构中,DAC ADC 均以基带采样频率运行。基于这种零中频架构的收发器称为 零中频收发器。  

 

直接变频架构具有许多优越的特性,接收机接收到的射频信号无需经过中频阶段直接到I/Q解调器,进入基带部分,这样就减少了超外差架构里面昂贵的中频模块,比如混频器和中频滤波器,所以这部分的成本和尺寸都可以缩小,如同在《零中频架构,这个帖子讲透了》中所述,零中频架构更容易集成在一块RFIC中。  

 

No3 直接射频采样 RF Sampling  

 

更进一步,我们是否可以进行直接射频采样,将数字信号直接采样成射频信号进行发射接收?当然这取决于AD/DA的转换速率,如果直接能达到射频熟虑,那这个未尝不可。并且AD/DA的转换速率也在不断提高,主要半导体公司的模数转换器(ADC)和数模转换器(DAC)的采样速率比十年前的产品快了好几个数量级。例如,2005年,世界上速度最快的12位分辨率ADC采样速率为250 MS/s;而到了2018年,12ADC的采样率已经达到6.4 GS/s。由于这些性能的提高,转换器可以直接数字化RF频率的信号,并为现代通信和雷达系统提供足够的动态范围。 

   

3种常见的射频收发架构分析

 

上图就是直接射频采样的接收机架构,仅由低噪声放大器、适当的滤波器和ADC组成。图2中的接收器不需要使用混频器和LOADC直接数字化RF信号并将其发送到处理器。在这个架构中,您可以通过数字信号处理(DSP)实现接收器的许多模拟组件。例如,您可以使用直接数字转换(DDC)来隔离终端信号,而不需要使用混频器。此外,在大多数情况下,除了抗混叠或重建滤波器之外,您还可以使用数字滤波替换大部分模拟滤波。  

 

由于不需要模拟频率转换,直接RF采样接收器的整体硬件设计要简单得多,从而能够实现更小的组成结构和更低的设计成本。  

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。