分享四个芯片失效分析手法

发布时间:2022-11-29 阅读量:1412 来源: 我爱方案网整理 发布人: Aurora

一般来说,芯片在研发、生产过程中出现错误是不可避免的,就如房缺补漏一样,哪里出了问题你不仅要解决问题,还要思考为什么会出现问题。随着人们对产品质量和可靠性要求的不断提高,失效分析工作也显得越来越重要,社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。对于应用工程师来说,芯片失效分析是最棘手的问题之一。    

 

之所以棘手,很无奈的一点便是:芯片失效问题通常是在量产阶段,甚至是出货后才开始被真正意识到,此时可能仅有零零散散的几个失效样品,但这样的比例足以让品质部追着研发工程师进行一个详尽的原因分析。    

 

对于研发工程师,在排查完外围电路、生产工艺制程可能造成的损伤之后,更多的还需要原厂给予支持进行剖片分析。不管芯片是否确实有设计问题,但出于避免责任纠纷,最终原厂回复给你的报告中,很可能都是把问题指向了“EOS”损伤,进而需要你排查自己的电路设计、生产静电防控。    


由于缺乏专业的分析设备,芯片内部设计的保密性不可能让应用工程师了解太多,因此对于原厂给予的分析报告,应用工程师很多时候其实处于“被动接受”的处境。        

 

虽然无法了解芯片内部的设计,但其实我们可以了解芯片厂商相关失效分析手法,至少在提供给你的报告上,该有的失效分析是否是严瑾,数据是否可靠,你可以做出一定的判断。    

 

手法一:电子显微镜查看表面异常    

 

失效的芯片样品到了芯片厂商手里后,首先要做的必然是用高放大倍数的电子显微镜,查看芯片表面在物理层面上是否有异常问题,比如裂痕、连锡、霉变等异常现象。      

      

分享四个芯片失效分析手法

 

分享四个芯片失效分析手法

 

手法二:XRay看芯片封装异常    

 

X射线在穿越不同密度物质后光强度会产生变化,在无需破坏待测物的情况下利用其产生的对比效果形成的影像可以显示出待测物的内部结构。IC封装中如层剥离、爆裂、空洞、打线等问题都可以用XRay进行完整性检验。  

      

分享四个芯片失效分析手法

 

手法三:CSAM扫描声学显微镜    

 

扫描声学显微镜利用高频超声波在材料不连续界面上反射产生的振幅及相位与极性变化来成像,典型的SAM图像以红色的警示色表示缺陷所在。    

SAM和XRay是一种相互补充的手法,X-Ray对于分层的空气不敏感,所得出的图像是样品厚度的一个合成体,而SAM可以分层展现样品内部一层层的图像。因此,对于焊接层、填充层、涂覆层等的完整性检测是SAM的优势。

        

分享四个芯片失效分析手法

 

手法四:激光诱导定位漏电结    

 

给IC加上电压,使其内部有微小电流流过,在检测微电流是否产生变化的同时在芯片表面用激光进行扫描。由于激光束在芯片中部分转化为热能,因此,如果芯片内部存在漏电结,缺陷处温度将无法正常传导散开,导致缺陷处温度累计升高,并进一步引起缺陷处电阻及电流的变化。通过变化区域与激光束扫描位置的对应,即可定位出缺陷位置。    

 

该技术是早年日本NEC发明并申请的专利技术,叫OBIRCH(加电压检测电流变化)。与该分析手法相似的,还有TIVA(加电流检测电压变化)、VBA(加电压检测电压变化)。这三种分析手法本质相同,只是为了规避专利侵权而做的不同检测方式而已(TIVA为美国技术专利,VBA为新加坡技术专利)。  

          

分享四个芯片失效分析手法

 

分享四个芯片失效分析手法

 

当然,在进行X-Ray、CASMOBIRCH之前,可以对每个管脚进行逐渐加电压并侦测电流曲线是否异常,由此先大概确认是否该管脚有失效的可能性。    

 

如下图多事,蓝色线条为参考电流,所提供的几个样品RFVDD管脚电流均有异常。在确认该异常之后,后续使用X-Ray等仪器时,可以更快速地锁定缺陷点所在的区域。

        

分享四个芯片失效分析手法

 

在使用X-Ray等手法定位缺陷区域后,最终采用机械剖片、腐蚀液剖片的方法,利用显微镜进行最后一轮的图像物理确认。

 

分享四个芯片失效分析手法

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。