TVS的防护能力如何?

发布时间:2022-12-7 阅读量:1412 来源: 我爱方案网整理 发布人: Aurora

 引言  

 

TVS瞬态电压抑制二极管,是一种采用半导体工艺制成的单个PN 结或多个PN结集成的高效型电路保护器件。TVS内部芯片为半导体硅材料,具有很高的可靠性;响应速度快;低动态内阻。在汽车类电子的传导抗扰测试中,有一个测试项目是P5脉冲抗扰度测试,这个测试项目的测试目的是衡量汽车电子、电气设备在抛负载的情况下的使用性能正常性。具体的P5脉冲发生在正在放电的电池被松开的瞬间,而这时交流发电机正在对蓄电池进行充电,与此同时,其他的负载仍然接在交流发电机上。

 

而应对P5的脉冲干扰,一般是解决方案是用大功率的TVS管,如下图所示:   

 

TVS的防护能力如何?

 

TVS管对设备的保护原理就不多说了,虽然我们有各种不同功率的TVS管来应对不同的脉冲干扰等级,但是实际情况中可能遇到的情况很复杂,整改的时候不一定能够及时的找到相对应型号的器件(手中的器件防护标准等级达不到机器的需要),这个时候可以用其他的组合方式来替代方案。  


 非常规手段替代方案  

 

1把两个参数相同的TVS同方向并联起来使用:

  

TVS的防护能力如何?

 

这种方法很好理解,多加上一个TVS,相当于多给了瞬时大电流一个流走的通道,让电流可以从两个通道流走。本质上对后端电路造成伤害的就是瞬时大电流,如果一个TVS管不能及时的把这些大电流导走,那么就多增加一个。在测试时,瞬时电流就是由测试电压除以输出电阻产生的。那么并联两个TVS后就可以把瞬时大电流加快导走,在一定的程度上通过的7637测试等级就会更高一些。

 

但是这种方案有一定的局限性,首先需要两个TVS的型号规格等参数是相同的,来保证在瞬时电流到来的时能够同时动作。如果动作时间不相同,那么可能会造成其中一颗TVS管率先被打坏,而另一颗还没有开始动作(先动作的那一颗TVS承受不住瞬时大电流)。

 

注意两个TVS并联的时候是同方向的。接反的话会直接造成短路。

 

方案2把两个TVS串联起来接在电路中间:   

 

TVS的防护能力如何?

 

根据   Ipp=P/Vc   可以知道,在器件功率不变的情况下,减小其钳位电压,则其通过的最大峰值电流就会增大。而把两颗TVS串联,在保证总的钳位电压不变的前提下,其总的通流能力更大。

 

如果我们把两个TVS串联起来,举个例子,假设原本一颗6.8KP22A(通流能力为191A左右)的TVS能通过的7637测试等级为87V4Ω、350ms。现在把两颗一样的TVS6.8KP12A)同方向串联在一起,在保证组合之后的钳位电压还是35.5V的情况下,单颗TVS的钳位电压已经降低(18V左右),那么单颗的通流能力也就增大了(377A的通流),通流能力的增大就意味着通过的测试等级可以增高(实际测试可以通过的等级为87V0.5Ω、350ms)。

 

PS:注意两个单向TVS的串联方向,是同方向串联,方向弄反的话则会使这两个单向的TVS组成一个双向的TVS。这跟只接一个单向的TVS没什么区别了。

 

方案三:TVS前端加电感:   

 

TVS的防护能力如何?

 

电感对于电路来说有着抑制电流变化的作用。

 

在7637等级测试不通过的时候,可以考虑在TVS的前端加上一个电感,电感具有储能的作用,在电路中会储存电量,由于电感有着通直阻交的特性,会阻碍电流的变化,因此测试电压过来的时候,电感可以把电流通过TVS管的时间变长,这样TVS管就能在原来的通过的等级基础上,更进一层。但是要注意考虑电感的通流量及饱和度。  

 

 总结  

 

当手中没有足够防护能力的TVS器件时,有时候可以考虑使用一些非常规手段来替代之前的方案,总结下来大概就是分为两种:分压和扩流,在TVS的前端一些常规器件使到达TVS时的电压降低(电阻、电感),或者是通过扩大电流导出的通道和增加电流导出的路径(串联、并联)。        

 

因为TVS的防护能力其实可以理解为通过TVS把电压钳位到一个后端被保护电路能够承受得住的值,或者说通过TVS及时的把瞬时大电流导走,从而保护后端电路,只要基于这两点去考虑就能够想到一些应对方法。

 

关于我爱方案网

 

我爱方案网是一个电子方案开发供应链平台,提供从找方案到研发采购的全链条服务。找方案,上我爱方案网!在方案超市找到合适的方案就可以直接买,没有找到就到快包定制开发。我爱方案网积累了一大批方案商和企业开发资源,能提供标准的模块和核心板以及定制开发服务,按要求交付PCBA、整机产品、软件或IoT系统。更多信息,敬请访问http://www.52solution.com


相关资讯
核心对比!无源晶振与有源晶振在结构和工作原理的本质区别

无源晶振与有源晶振是电子系统中两种根本性的时钟元件,其核心区别在于是否内置振荡电路。晶振结构上的本质差异,直接决定了两者在应用场景、设计复杂度和成本上的不同。

温度稳定性对RTC晶振的计时误差影响与分析

RTC(实时时钟)电路广泛采用音叉型32.768kHz晶振作为时基源,但其频率稳定性对温度变化极为敏感。温度偏离常温基准(通常为25℃)时,频率会产生显著漂移,且偏离越远漂移越大。

从参数到实践!剖析有源晶振的频率稳定度、老化率及正确接线方案

有源晶振作为晶振的核心类别,凭借其内部集成振荡电路的独特设计,无需依赖外部电路即可独立工作,在电子设备中扮演着关键角色。本文将系统解析有源晶振的核心参数、电路设计及引脚接法,重点阐述其频率稳定度、老化率等关键指标,并结合实际电路图与引脚定义,帮助大家全面掌握有源晶振的应用要点,避免因接线错误导致器件失效。

如何对抗晶振老化?深入生产工艺与终端应用的防老化指南

晶振老化是影响其长期频率稳定性的核心因素,主要表现为输出频率随时间的缓慢漂移。无论是晶体谐振器还是晶体振荡器,在生产过程中均需经过针对性的防老化处理,但二者的工艺路径与耗时存在显著差异。

无源晶振YSX321SL应用于高精度HUD平视显示系统YXC3225

在现代汽车行业中,HUD平视显示系统正日益成为驾驶员的得力助手,为驾驶员提供实时导航、车辆信息和警示等功能,使驾驶更加安全和便捷。在HUD平视显示系统中,高精度的晶振是确保系统稳定运行的关键要素。YSX321SL是一款优质的3225无源晶振,拥有多项卓越特性,使其成为HUD平视显示系统的首选。