发布时间:2024-09-18 阅读量:4530 来源: 综合网络 发布人: bebop
在自动化控制、机器人技术以及精密测量等领域中,编码器作为关键的传感器件,起着至关重要的作用。编码器能够将机械位移或角度转换成电信号输出,为系统提供准确的位置、速度及方向信息。本文旨在探讨编码器的基本工作原理及其选型时需要考虑的关键因素。
编码器主要分为两大类:绝对式编码器和增量式编码器。
绝对式编码器:每转动一个位置,都有唯一的数字代码与之对应。这意味着即使电源断开后重新接通,也能立即知道当前的确切位置。这种类型的编码器适用于需要高精度定位的应用场合。
增量式编码器:通过检测位移的变化来计算位置,它提供的是相对于某个参考点的变化量。这类编码器通常用于速度测量或当只需要相对位置信息时。由于它不提供绝对位置信息,因此在每次启动设备时需要进行归零操作。
两种类型编码器的核心部件都是光栅或磁性材料制成的码盘,以及相应的读取装置(如光电元件)。当码盘随轴旋转时,读取装置会根据遮挡或透过的光线变化产生脉冲信号,从而实现对旋转角度或直线位移的精确测量。
精度要求:选择编码器时首先要考虑应用的具体需求,包括所需的分辨率和重复定位精度。对于需要极高精度的应用,应优先考虑使用绝对式编码器。
环境条件:考虑到工作环境中的温度、湿度、灰尘等因素,选择具有适当防护等级的编码器。例如,在多尘环境中,可能需要选择封闭型编码器以防止灰尘进入影响性能。
安装空间:不同的编码器尺寸各异,需确保所选型号适合实际的安装空间。同时也要注意轴径是否匹配。
接口类型:确认控制系统支持的通信协议,如SSI、RS485、CANopen等,选择相兼容的编码器。
成本效益:在满足功能需求的前提下,综合考量性价比,避免过度投资于超出项目需求的高端产品。
品牌与售后服务:选择知名品牌的编码器往往能获得更稳定的产品质量和更好的技术支持服务。
综上所述,正确理解和掌握编码器的工作原理是合理选型的基础。在具体应用中,还需结合项目的实际情况,综合分析各项指标,做出最合适的决策。随着技术的发展,编码器的功能和性能也在不断进步,为各行各业提供了更加精准可靠的解决方案。
国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。
据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。
在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。
随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。
随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。