晶振PPM误差分析与计算方法

发布时间:2024-11-1 阅读量:804 来源: 发布人: bebop

Ø 晶振精度指标:PPM

晶振精度通常用 PPM(Parts Per Million,百万分之一)来衡量,这一单位描述了晶体振荡器的频率稳定性或偏差程度。PPM 表示实际输出频率与标称频率之间的相对误差,是衡量晶振频率精度的重要参数。

 

Ø 如何计算晶振的频率差

频率差反映了晶振的实际频率与标称频率之间的差异。通过公式计算频率差的PPM值如下:

PPM=实际频率标称频率/标称频率 X 106

释义

- 实际频率通过频率计或其他适当的仪器测量得到的晶振的实际工作频率。

- 标称频率晶振制造商在晶振规格书中规定的标准或标称频率。

示例:

例如,标称频率为 32.768 kHz 的晶振,如果实际测得的频率为 32.7685 kHz,则PPM的计算如下:

PPM=(32768.5Hz−32768Hz/32768Hz*106≈15.26

 

Ø 频差类型:常温频差V.S.温度频差

图片9.png 

(曲线图)

晶振的频率稳定性在不同温度条件下会有所变化,针对晶振而言,其频率精度一般包括常温频差和温度频差两个重要指标:

1、常温频差(Frequency Tolerance):YXC规格书里也称作频率偏差(见下图),是与常温(25°C)下标称频率之间的偏差,通常以百万分率(PPM)表示。

2、温度频差(Frequency Versus Temperature Characteristics):YXC规格书里也称作频率-温度特性(见下图),指在设定的工作温度范围内,实际频率相对标称频率的最大偏差值,同样以百万分率(PPM)表示。

图片10.png

 

 

Ø RTC晶振32.768KHz频率精度PPM值及时间偏差计算
对于 32.768kHz 的 RTC 时钟晶振,可以通过其频率精度(PPM)推导出每日的时间误差范围。具体步骤如下:
举例:若晶振32.768KHz精度为±10PPM,一天时间误差计算公式如下:
10(PPM)×24(1天=24小时)×60(1小时=60分钟)×60(1分钟=60秒)=864000*1/1000000=0.864秒
即:该RTC晶振每天的时间误差不超过0.864秒,即:若为+10PPM,每天最多快0.864秒,若为-10PPM,每天最多慢0.864秒。

图片11.png
32.768KHz晶体谐振器典型应用电路)

Ø RTC 时钟晶振 32.768kHz 每日时间误差参照表:

±10PPM:实际频率范围为32768.32768Hz~32767.67232Hz,每天时间误差为0.864×1=0.864秒,月误差25.92秒,一年时间总偏差为5.184分钟。

±20PPM:实际频率范围为32768.65536Hz~32767.34464Hz,每天时间误差为0.864×2=1.728秒,月误差51.84秒,一年时间总偏差为10.368分钟。

±30PPM:实际频率范围为32768.98304Hz~32767.01696Hz,每天时间误差为0.864×3=2.592秒,月误差77.76秒,一年时间总偏差为15.552分钟。

如果有晶振技术、晶振资料下载以及晶振询料报价等问题都可以在线联系客服哟1v1业务员报价服务+20年FAE工程师为您解决晶振疑难问题~


相关资讯
美国被曝秘密植入追踪器监控高端AI芯片流向 严防技术流入中国

美国为防止高端人工智能(AI)芯片通过第三方渠道流入中国,已秘密要求芯片制造商英伟达(NVIDIA)、超威半导体(AMD)等企业在出口至部分国家的AI芯片中植入追踪程序,以便实时监控芯片流向

晶振行业必备术语手册:工程师必收藏(下)

在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。

晶振行业必备术语手册:工程师必收藏(上)

在电子电路设计中,晶振的每一项参数都与产品命运息息相关——哪怕只差0.1ppm,也可能让整板“翻车”。看似最基础的术语,正是硬件工程师每天必须跨越的隐形门槛。

3点区分TCXO温补晶振与OCXO恒温晶振

电路板中常用到恒温与温补这两种晶振,恒温晶振与温补晶振都属于晶体振荡器,既有源晶振,所以组成的振荡电路都需要电源加入才能工作

体积缩小58%!Vishay发布185℃耐受汽车级TVS解决方案​

汽车电子系统日益复杂,尤其在48V架构、ADAS与电控系统普及的当下,对瞬态电压抑制器(TVS)的功率密度、高温耐受性及小型化提出了严苛挑战。传统大功率TVS往往体积庞大,难以适应紧凑的ECU布局。威世科技(Vishay)日前推出的T15BxxA/T15BxxCA系列PAR® TVS,以创新封装与卓越性能直面行业痛点,为下一代汽车设计注入强大保护能力。