揭秘集成开/关控制器优化系统能效的解决方案

发布时间:2025-01-10 阅读量:1914 来源: 发布人: lina

【导读】本文将介绍如何使用开/关控制器和电池保鲜密封件集成解决方案,使产品设计在操作和生产过程中更加高效。具体而言,本文将详细介绍ADI公司的集成开/关控制器在节能特性、小尺寸和高ESD额定值方面的优势。


摘要

本文将介绍如何使用开/关控制器和电池保鲜密封件集成解决方案,使产品设计在操作和生产过程中更加高效。具体而言,本文将详细介绍ADI公司的集成开/关控制器在节能特性、小尺寸和高ESD额定值方面的优势。

简介

在疫情影响下,高度依赖在线资源的混合办公模式加速普及,电子系统成为了必不可少的工具。此外,联合国提出2030可持续发展议程1,电子公司正持续实践可持续发展工作,使得电子系统效率的重要性愈发凸显。这要求我们,不仅在现场操作期间,更要在生产制造过程中,采取各种措施提升能效2。

利用开/关控制器促进能效提升

高效利用资源对于实现可持续发展目标至关重要1。我们可以通过多种方式来有效利用资源。比较简单的方法是在不使用电子设备时将其关闭,以避免不必要的能源消耗。另一种有效方法是通过实施节能机制来实现高效可靠的设计。

开/关控制器,尤其是那些可以用作电池保鲜密封件的控制器,是实现这些目标的有力助手。在电路不使用时,这种控制器会断开整个电路与电池的连接,有助于延长电池寿命并节约能源3。这不仅可以延长产品的保质期,还能尽可能降低待机功耗,减少不必要的电池放电,从而减少能源浪费。

以下内容将介绍此类控制器如何通过工作模式、集成特性和稳健性来帮助节约能源。

通过待机模式和休眠模式减少能源浪费

消费类电子设备经常遇到的一个问题是,现成产品常常电池电量不足,使用前需充电或更换电池。这表明能源使用效率低下,同时用户体验也会大打折扣。

为解决这个问题,高效的电池供电设备会采用低功率损耗电路或使用电池保鲜密封件。电池保鲜密封是开/关控制器的功能,可以通过断开电池与下游电路的连接来防止电池放电,而在收到电路使能信号(例如来自按钮的信号)后进行连接,如图1所示3, 4。这种电路工作模式通常称为运输模式或待机模式,其中后者更加通用,而前者专门用于描述产品首次使用前的状态。

然而,即便使用电池保鲜密封件,电池还是会慢慢耗尽电量,导致系统效率受影响。耗电的程度取决于电路的待机能耗。能耗较低的器件有助于解决这个问题。例如新型MAX16169等带有电池保鲜密封件的按钮控制器,这些器件的待机电流额定值仅为几纳安,如图1所示。


揭秘集成开/关控制器优化系统能效的解决方案

图1.GPS追踪器系统中的电池保鲜密封件


按下按钮后,电池就会连接到负载。以图1为例,电池将连接到微控制器(MCU)、安全数字(SD)模块和全球定位系统(GPS)模块。此外,MAX16163/MAX16164中的休眠模式也有助于进一步延长电池寿命。这些器件会周期性地在特定时间打开和关闭系统,定期唤醒系统中的器件,待其完成任务后,再次进入休眠模式。对于设备间歇运行的物联网(IoT)等无线监控应用,此特性非常实用5,可以通过降低待机期间的功耗,提高整体效率。图2显示了休眠模式 (即SLEEP_TIMER状态)下如何降低功耗;当电池连接到系统时(如图1所示),则会出现ACTIVE_STATE。


揭秘集成开/关控制器优化系统能效的解决方案图2.休眠模式电流消耗


通过集成解决方案实现无形化

PCB制造的最佳实践包括负责任的资源管理6。这包括采取无形化措施,即在电源中使用更少、更小、更轻的电子器件2。为此,我们可以选择单个封装中包含多个功能的器件,从而减少所需PCB的尺寸,进而降低最终产品制造的能源消耗。例如,图3中MAX16150和MAX16169整合了负载开关和按钮去抖功能,而MAX16163/MAX16164还增加了时序功能。请注意,MAX16150和MAX16169的方框图非常相似。

此外,传统方法通常使用实时时钟、负载开关和按钮控制器来实现,图4的集成解决方案将对此加以改进。MAX16163/MAX16164集成解决方案不仅能够将解决方案尺寸缩小60%,而且在保持相同功能的前提下,还能将电池寿命延长20%5。

借助高ESD额定值器件提升系统级稳健性

在集成电路中加入静电放电(ESD)保护电路,对于确保电路在恶劣环境下的可靠性至关重要。这些电路需要连续稳定地运行,因此需要足够的保护来抵御外部浪涌7。系统设计人员通过ESD测试方法来评估产品的抗静电性能,例如人体模型(HBM)方法用于器件级ESD测试,而IEC 61000-4-2模型用于系统级测试8。

器件级ESD测试旨在确保IC在制造过程中不会受到静电放电的损坏。HBM模拟带电人体接触IC的场景,将具有潜在破坏力的ESD通过IC释放到地面。系统级ESD测试旨在确保器件能够在各种实际应用中的工作条件下承受瞬态事件,包括防雷。为了满足此要求,发布的产品必须按照IEC 61000-4-2 ESD标准模拟实际瞬态条件,进行严格测试。虽然HBM和IEC 61000-4-2 ESD测试方法均模拟带电人体放电至电子系统的场景,但IEC 61000-4-2标准在许多方面与器件级ESD有所不同8。


表1.HBM和IEC 61000-4-2 ESD测试方法的峰值电流比较

施加电压(±kV)

HBM峰值电流(A)

IEC 61000-4-2峰值电流(A)

2

1.33

7.5

4

2.67

15.0

6

4.00

22.5

8

5.33

30.0

10

6.67

37.5

15

10

56.25

40

26.67

150


表1显示,HBM测试中的峰值电流是IEC 61000-4-2测试中的脉冲电流的1/5.6。在冲击次数方面,器件级HBM测试仅需要一次正冲击和一次负冲击,而系统级IEC 61000-4-2要求IC至少经过10次正冲击和10次负冲击才能通过8。这意味着为了达到相应的IEC 61000-4-2额定值,系统工程师应该考虑使用HBM额定值高得多的器件。例如,HBM ESD额定值为+15 kV的系统(如MAX16150)可能满足±2 kV的IEC 61000-4-2额定值要求。类似地,具有+40 kV HBM ESD额定值的器件(如MAX16163/MAX16164和新型MAX16169)可帮助实现±6 kV IEC 61000-4-2合规性。


揭秘集成开/关控制器优化系统能效的解决方案

图3.MAX16169和MAX16163/MAX16164方框图


揭秘集成开/关控制器优化系统能效的解决方案图4.分立解决方案与采用MAX16163/MAX16164的集成解决方案5


ESD额定值越高,表示器件对恶劣环境的耐受力越强。这不仅能有效减少现场操作中断,提升系统的可靠性,而且能降低故障的可能性,从而减少频繁更换产品的成本。ADI公司的开/关控制器和电池保鲜密封件在所有引脚上均采用ESD保护结构,以便在搬运和组装过程中防止静电放电。此外,开关输入处还设计了一重额外保护。这些密封件的高HBM ESD额定值有助于系统设计满足IEC 61000-4-2标准。

结论

若要持续提升能源效率,就必须在从工厂生产到现场运行的整个过程中,使用可以减少能源浪费的器件。本文介绍了ADI公司的按钮开/关控制器和电池保鲜密封产品如何通过待机模式和休眠模式帮助减少能源浪费;如何通过集成功能节省生产能源、减小PCB尺寸;以及如何通过更高的ESD额定值提高现场稳健性。

参考资料

1“变革我们的世界:2030年可持续发展议程”,联合国。
2 Anthony Schiro和Stephen Oliver,“宽禁带电源有望推动全球电气化进程,为我们创造一个可持续发展的未来”,《IEEE电力电子杂志》,第11卷,第1期,2024年3月。
3“电池保鲜与密封”,ADI公司,2020年7月。
4“监控电路确保微处理器始终受控”,ADI公司,2022年4月。
5 Suryash Rai,“如何大幅提高物联网器件的电池能效比”,ADI公司,2023年3月。
6“可持续消费类电子设备设计:PCB材料和供应链管理”,Cadence PCB Solutions。
7 Sang-Wook Kwon、Seung-Gu Jeong、Jeong-Min Lee和Yong-Seo Koo,“利用静电放电保护电路设计能够抵御破坏且兼具可持续性的低压差稳压器”,《Sustainability》(可持续发展),2023年6月。
8 Anindita Bhattacharya,“±2kV HBM ESD保护是否足以保护物联网设备?”Semtech,2023年6月。

(作者:Bryan Angelo Borres,产品应用工程师,Noel Tenorio,产品应用经理)


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。





我爱方案网


推荐阅读:

单个IC实现紧凑高效双极性稳压器方案

全面解析交流电源系统的过流保护方案

基于NXP产品的汽车通用评估板方案

掌握步进电机精髓:脉宽调制与正弦波控制的奥秘

探索SiC的高电压电池断开开关的设计要点与挑战



相关资讯
具备高额定功率与高脉冲耐受能力 SMD 绕线电阻方案

美国柏恩 Bourns 全球知名电源、保护和传感解决方案电子组件领导制造供货商,推出最新的 Bourns® PWR6927/8030/8937/A247/B053 SMD 绕线电阻系列。该系列具备高额定功率值 (最高可达 10 W) 及高脉冲耐受能力,专为满足设计师针对太阳能、马达控制、电信、开关电源 (SMPS) 以及能源储存系统 (ESS) 等应用中放电与预充电电路对可靠性和稳定性的更高需求所设计。

揭秘PassThru技术如何延长储能系统使用寿命

PassThru™模式是一种控制器工作模式,能够让电源直接连接到负载。PassThru模式用于降压-升压或升压转换器中,以提高效率和电磁兼容性。本文介绍了采用PassThru技术的控制器相比其他控制器的优势,以及PassThru模式如何延长储能系统的使用寿命,特别是超级电容的总运行时间。

采用MSO 5/6内置AWG实施功率半导体器件双脉冲测试方案

SiC器件的快速开关特性包括高频率,要求测量信号的精度至少达到100MHz或更高带宽 (BW),这需要使用额定500MHz或更高频率的示波器和探头。在本文中,宽禁带功率器件供应商Qorvo与Tektronix合作,基于实际的SiC被测器件 (DUT),描述了实用的解决方案。

解锁 AL8866Q:为汽车照明量身定制的高效 LED 驱动方案

Diodes 公司 (Diodes) (Nasdaq:DIOD) 宣布推出AL8866Q LED 驱动器,扩大符合汽车标准*的产品组合。这款直流开关 LED 驱动控制器可驱动外部 MOSFET,支持降压、升压、降升压及单端一次侧电感转换器 (SEPIC) 拓扑,适用于高功率 LED 照明系统。产品应用包括日行灯 (DRL)、远近光灯、雾灯、转向灯、刹车/停车灯等。

基于FPGA技术的创新:打造高效低功耗模块化小USB解决方案

USB技术的开发面临着独特的挑战,主要原因是需要在受限的设备尺寸内实现稳定互连、高速度和电源管理。各种器件兼容性问题、各异的数据传输速度以及对低延迟和低功耗的要求,给工程师带来了更多压力,他们需要在严格的技术限制范围内进行创新。工程师必须将USB功能集成到越来越小的模块中,并在功能与设计限制之间取得平衡。 基于FPGA技术的创新:打造高效低功耗模块化小USB解决方案 USB技术的开发面临着独特的挑战,主要原因是需要在受限的设备尺寸内实现稳定互连、高速度和电源管理。各种器件兼容性问题、各异的数据传输速度以及对低延迟和低功耗的要求,给工程师带来了更多压力,他们需要在严格的技术限制范围内进行创新。工程师必须将USB功能集成到越来越小的模块中,并在功能与设计限制之间取得平衡。 本文总结了业界用于高性能 USB 3 设备的一些典型解决方案,并介绍了一种新的架构,这种架构既能节省功耗和面积,又能提高灵活性和易用性。 莱迪思最近发布了一款带有原生USB 3.2 Gen 1的新FPGA系列,名为莱迪思CrossLinkU™-NX。除了产品数据表之外,本文还将详细介绍该器件。CrossLinkU-NX器件的一些