发布时间:2025-02-24 阅读量:2234 来源: 综合网络 发布人: bebop
许多过程控制传感器,例如热敏电阻和应变计电桥,都需要的偏置电流。通过添加单个电流设置电阻器 R 1,您可以配置电压参考电路 IC 1 以产生恒定且的电流源(图 1 )。然而,信号源的误差取决于 R 1 和 IC 1的精度 ,并影响测量精度和分辨率。尽管您可以指定精度超过常用电压基准 IC 精度的高精度电阻,但基准电压源的误差决定了该电流源的精度。尽管制造商限度地降低了电压基准的温度敏感性和输出电压误差,但对电源变化的敏感性可能会影响其精度,特别是在必须在较宽电源电压范围内运行的过程控制应用中。
图 1 一对共源共栅连接的 JFET 可降低电源电压波动对电流源精度的影响。
一对共源共栅连接的 JFET Q 1 和 Q 2形成恒流源,限度地降低参考电路对电源电压波动的敏感度,并将 IC 1的工作电压扩展至超过其 5.5V 额定值。此外,Q 1 和Q 2 有效地将电流源的等效电阻从几兆欧增加到几乎千兆欧范围。在电路的诺顿模型中,等效电阻代表理想电流源上的并联电阻。
当栅源偏置电压为 0V 时,N 沟道 JFET 在饱和漏极电流下作为耗尽型器件运行。与需要栅极偏置电压才能导通的耗尽型 MOSFET 不同,JFET 在默认导通状态下工作,需要栅极偏置电压来切断导通。当其栅源电压相对于源极变得更负时,JFET 的漏极电流在夹断电压处变为零。 JFET 的漏极电流大致随其栅极偏压变化: I D ≈I DSS ×(1+V GS /V P ) 2,其中 I D 为漏极电流,I DSS 为饱和漏极电流,V GS 为栅极至栅极电压。 -源电压,V P 是夹断电压。
假设IC 1的输出电压V REF保持恒定在1.8V。由于输出电压驱动Q 2的栅极,因此IC 1的输入电压V IN等于V REF –V GS(Q2),即1.8V–(–1.2V)=3V。因此,Q 2的栅源电压保持在其1.2V的标称夹断电压,并且随着电流源的微小变化而同步变化。当电源电压从 3V 变化到 30V 以上时,输入电压几乎保持恒定,正如您所期望的,因为 V REF 也保持恒定。共源共栅 FET 配置使电流源的诺顿等效电阻超过了电压基准和单独的 R 1 的电阻 。您可以使用单个 JFET,但堆叠两个 JFET 可以进一步增强电路的有效阻抗。请注意,IC 1 不会降低精度,因为 JFET 使 IC 1的输入电压几乎保持恒定,并且 IC 1 有效地消除了初始栅源电压变化以及 Q 1 和 Q 2 引入的温度影响。
由V IN、V REF和V GS(Q2)组成的基尔霍夫电压环路中的负反馈允许漏极电流达到满足Q 2传输方程的 平衡偏置点。 Q 2的漏极电流由 (V REF /R 1 ) 加上 IC 1的内部“内务”电流 I GND之和组成,保持恒定。添加 Q 1可以将 Q 2输出阻抗 的影响降低到微不足道的程度。调整 R 1的值 可在 200 ?A 至 5 mA 的有用范围内改变电路的输出电流,其中 Q 2的饱和漏极电流规格规定了上限。如果您选择具有较高饱和漏极电流的 JFET,请确保不超过 Q 1的功耗。
请注意,电路的电源电压下限必须超过电路的顺从电压 3V 加上传感器引入的压降:I SOURCE ×R 2。电路的电源电压上限不得超过I SOURCE ×R 2 +30V。例如,向 1kΩ 压力传感器桥 R 2提供 2.5mA 的电流,将电源电压范围限制为 5.5 至 32.5V。该电路的输出电流在很宽的电源电压范围内变化小于 1 A(图 2 )。
图 2 将 R 1设置 为 1 kΩ、750Ω 和 510Ω 的值可提供大约 1.8、2.5 和 3.6 mA 的输出电流,这些电流对宽范围的电源电压不敏感。
移动芯片领域的性能与能效角力正迎来颠覆性时刻。最新信息表明,联发科即将推出的旗舰级天玑9500移动平台,凭借前所未有的技术组合,已锁定2024年末高端智能手机的核心引擎地位。行业观察人士指出,该平台有望为用户体验树立全新标杆。
2025年6月16日,深圳市江波龙电子股份有限公司(股票代码:301308)宣布其全资子公司Longsys Electronics (HK)与全球存储解决方案巨头Sandisk(闪迪)签署具有法律约束力的合作备忘录。双方将整合江波龙在主控芯片设计、固件研发、封测制造能力,以及闪迪在NAND Flash技术与嵌入式系统设计的优势,面向移动终端及物联网(IoT)市场联合开发定制化UFS(通用闪存存储)产品及解决方案。
在5G通信加速普及与技术迭代的背景下,频谱资源紧张已成为制约行业发展的关键瓶颈。随着频段分配日益复杂、共站共址情况普遍化以及保护频段不断收窄,市场对射频滤波器性能的要求不断提升。5G与MIMO技术的广泛应用导致频段数量激增,设备中所需的滤波器与开关数量呈几何级增长,而终端设备内部空间“寸土寸金” 的现实,迫使滤波器必须在更小的体积内实现更优性能。在这一背景下,诺思微系统推出的ICBAR(干涉耦合体声波谐振器)滤波器技术,凭借其创新的层叠结构设计,成功解决了高性能与小尺寸难以兼得的技术矛盾,成为推动行业持续发展的关键突破点。
2025年第一季度,中国大陆PC市场(不含平板电脑)迎来开门红,整体出货量达到890万台,同比增长12%,呈现稳健复苏态势。与此同时,平板电脑市场表现更为亮眼,出货量达870万台,同比大幅攀升19%,显示出移动计算设备的持续受欢迎。
2025年6月17日,上海——全球智能电源与感知技术领导者安森美(onsemi, NASDAQ: ON) 在第九届北京国际听力学大会上展示了革新性听力健康技术。公司凭借Ezairo系列智能音频平台,重点呈现了人工智能在可穿戴听觉设备中的前沿应用,彰显其在个性化听觉解决方案领域的创新领导力。