从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

发布时间:2025-03-14 阅读量:3357 来源: 发布人: lina

【导读】噪声敏感器件的功耗不断提高。医疗超声成像系统、5G收发器和自动测试设备(ATE)等应用需要在面积较小的PCB上实现高输出电流(>5 A)、低噪声水平和高带宽。由于对输出电流的需求较高,以前使用的传统双级(降压+低压差(LDO)稳压器)解决方案需要的PCB面积较大,导致功耗较高,因此不太受欢迎。


问题

能否进一步降低超低噪声µModule®稳压器的输出开关噪声?


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


回答


使用二阶输出滤波器可将超低噪声µModule稳压器的输出噪声降低90%以上。选择电容和电感元件时必须谨慎,以确保控制回路能够快速且稳定地运作。这种设计对于无线和射频应用特别有益,因为快速瞬态响应可有效缩短系统消隐时间并提升信号处理效率。此方法的噪声水平与LDO相当,效率堪比开关稳压器。


简介


噪声敏感器件的功耗不断提高。医疗超声成像系统、5G收发器和自动测试设备(ATE)等应用需要在面积较小的PCB上实现高输出电流(>5 A)、低噪声水平和高带宽。由于对输出电流的需求较高,以前使用的传统双级(降压+低压差(LDO)稳压器)解决方案需要的PCB面积较大,导致功耗较高,因此不太受欢迎。


LTM4702超低噪声µModule稳压器采用ADI公司专有的Silent Switcher®技术,兼具超快瞬态响应和超低噪声特性。得益于此,该器件的效率可与同步开关稳压器相媲美,是大电流和噪声敏感型应用的理想选择。在许多应用中,该解决方案可以省去LDO电路,从而节省约60%的LDO成本、至少4 W的LDO功耗以及2 cm²以上的LDO PCB空间(包括间隙)。


众所周知,对于某些要求开关频率纹波非常小的应用,二阶LC滤波器可以降低输出电压的开关频率谐波。然而,若是既要尽量减小开关纹波,又要维持控制环路稳定和其高带宽,仅依靠这种方法是不可行的,未经优化的LC滤波器会使控制环路变得不稳定,导致输出振荡。本文先分析了二阶LC滤波器的简化环路,然后提出了用于指导电容分配和电感计算的直观设计方法,最后通过LTM4702设计示例验证了所提出的设计方法。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图1.电流模式降压稳压器以及二阶LC及其典型波特图


二阶LC输出滤波器设计的环路分析


在电流模式降压稳压器中,输出阻抗是控制对象。图1为二阶LC的电路及其典型波特图。为了在有负载时仍能准确调节直流电压,需要检测VOUT远端节点B。


从VOUT到iLO的转换函数为:


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


从转换函数(公式1)可知,二阶LC滤波器会引入频率为谐振频率的双极点。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


从图1中的典型波特图可以看出,在谐振频率处存在陡峭的90°相位延迟。为确保稳定性,谐振频率应比控制环路带宽高4到5倍,这是为了避免可能导致不稳定的90°相位延迟。此外,为使开关频率纹波衰减到足够低的水平,此谐振频率应设置为开关频率的1/5到1/4,以便LC滤波器能够提供足够的滤波效果。开关频率下的衰减增益和控制环路带宽之间存在此消彼长的关系。但这种方法有助于选择谐振频率,并确定合适的LC值。


为了保持相似的负载瞬态性能,添加LC滤波器前后的输出阻抗应该保持一致。换句话说,无论有没有LC滤波器,输出电容都应该大致相同。根据以往的经验,图1中C2的电容值可以与未使用LC时相似,而C1可以使用小得多的电容,以便C1可以主导谐振频率位置。由于C1远小于C2,公式2可以简化为公式3:


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


建议C1至少为C2值的十分之一。选定C1之后,就可以使用公式3中的谐振频率计算出Lf值。通过检查实际元件的可用性,可以确定合适的C1和Lf值。


元件选择注意事项


在有效二阶LC滤波器设计中,电容和电感元件的选择至关重要。二阶LC滤波器需要在开关频率下提供足够大的衰减。超低噪声µModule稳压器的开关频率较高,约为1 MHz至3 MHz,因此二阶LC中的电感和电容需具备良好的高频特性。C2的选择要求与没有LC的设计类似,因此这里不作讨论。C1和Lf的选择标准如下。


►C1电容的选择标准。

1.C1的自谐振频率必须高于开关频率。开关频率下C1的阻抗是二阶LC设计的关键。建议使用陶瓷电容,其自谐振频率可参考其阻抗与频率的关系曲线来确定。通常,典型的0603或0805尺寸陶瓷电容是理想选择,其自谐振频率必须在3 MHz以上。

2.为了承受所需电流,RMS电流额定值应足够高。假设所有交流纹波都经过C1,那么陶瓷电容应能处理较大的RMS纹波电流。可参考陶瓷电容的温升与电流的关系曲线来确定其电流能力。根据经验来看,对于0603尺寸的电容器,约4 A rms是个不错的选择。


►Lf电感的选择标准

1.对于8A以下的输出电流,建议使用铁氧体磁珠,因为它具有良好的高频特性且尺寸紧凑。铁氧体磁珠也有助于抑制极高频率的尖峰1。对于8 A以上的输出电流,或者需要较大电感,可能很难找到合适的铁氧体磁珠,因此建议使用传统的屏蔽电感。

2.选择RMS电流额定值足够大的铁氧体磁珠/电感,例如,对于8 A以下的输出电流,选择RMS电流额定值为8 A的电感。建议所选器件的电感值小于µModule器件电感值的10%。


超低噪声µModule设计示例


图2为LTM4702的设计示例。该方案兼具超低电磁干扰(EMI)辐射和超低有效值噪声特性,开关频率可在300 kHz至3 MHz范围内调节。在设计示例中,开关频率设置为2 MHz,以优化12 VIN至1 VOUT应用的噪声性能。根据所提出的LC滤波器设计方法,二阶LC的谐振频率设置为400 kHz至500 kHz,是开关频率的1/5至1/4。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图2.LTM4702示例电路和电路板照片


目标控制环路带宽为100 kHz,LC谐振频率是其4到5倍;C1使用两个0603 4.7 µF电容;铁氧体磁珠BLE18PS080SH1用作Lf,其尺寸为0603,如图2所示;C2仍使用两个1206 100 µF陶瓷电容;谐振频率为424 kHz。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南


噪声测量对比如图3所示。在2 MHz开关频率下,无LC的输出开关纹波为234 µV,添加0603铁氧体磁珠后大幅降低至15 µV。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图3.无LC的开关噪声(234 µV)与有LC的开关噪声(15 µV)


为尽可能降低噪声而添加的二阶LC滤波器,能够将控制环路带宽维持在100 kHz,并保持快速瞬态响应,恢复时间小于10 µs。这些结果可以通过对比有无LC滤波器的实验评估来确认。由于恢复时间在10 µs内,消隐时间可以忽略不计,这对于无线和射频应用是非常不错的表现。ADI公司的LTM4702帮助系统设计开发者解决了负载瞬态消隐时间挑战,避免了信号处理效率低下的问题。


图4的负载瞬态波形验证了添加二阶LC滤波器后,设计具有快速瞬态响应,并且恢复时间在10 µs内,与没有此滤波器的设计示例相比也毫不逊色。


从理论到实践:超低噪声µModule稳压器二阶滤波器优化的全面指南

图4.负载瞬态结果:无LC与有LC(恢复时间在10 µs内)


结论


如何在支持大电流应用的同时尽量减少噪声,并确保高效率和稳定性,是一项棘手难题。添加二阶LC滤波器可以显著降低噪声,但如果优化不当,可能会导致电路不稳定。为了在不影响稳定性的前提下尽可能地降低噪声,应使用优化的二阶LC滤波器。基于开关频率、控制环路带宽和谐振频率精心选择所需的电感和电容元件,可以有效降低开关噪声,同时保持快速瞬态响应和高带宽特性。


参考文献


1 Jim Williams.“AN101:尽可能地减少线性稳压器输出中的开关稳压器残留物”。凌力尔特,2005年7月。

(来源:ADI公司,作者:George (Zhijun) Qian,高级模拟设计工程经理,Jennifer Florence Joseph Benedicto,高级设计评估工程师)


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


我爱方案网


推荐阅读:

[换馆定档] IOTE 2025国际物联网展·上海站携手世界移动通信大会(MWC)定档6月上海新国际博览中心!

基于onsemi产品的1500W热泵热水器压缩机驱动器方案

精密测量系统噪声溯源:RTI/RTO建模与仿真实践指南

基于Infineon产品的3.3KW双向图腾柱PFC数字电源方案

如何在传感器近端实现量化热电偶高效输出?

相关资讯
三核异构+MRAM存储:深度解密瑞萨革命性RA8P1 MCU架构

在全球智能化浪潮驱动下,边缘设备对实时AI处理能力的需求呈现指数级增长。2025年7月,瑞萨电子推出划时代RA8P1微控制器产品群,首次在MCU级别实现神经网络算力与通用处理性能的协同突破。该方案融合Arm最新计算架构与台积电尖端工艺,标志着边缘计算设备正式迈入GHz+NPU的新纪元。

数据中心电源变革:瑞萨SuperGaN®技术实现800V架构新突破

在数据中心能耗激增、电动汽车普及加速与可再生能源转型的时代背景下,高效率、高功率密度电源解决方案成为产业迫切需求。2025年7月2日,瑞萨电子(TSE:6723)推出TP65H030G4PRS、TP65H030G4PWS及TP65H030G4PQS三款第四代增强型(Gen IV Plus)650V GaN FET,为800V高压AI数据中心、服务器电源及能源转换系统带来颠覆性性能提升。这一里程碑式产品线彰显了瑞萨整合Transphorm领先技术后的创新实力。

台积电AI芯片业务爆发式增长,2027年营收或达460亿美元

全球半导体代工巨头台积电在人工智能芯片领域的领导地位持续巩固。美国投行Needham最新报告预测,其AI相关营收将从2025年的260亿美元跃升至2027年的460亿美元,年均复合增长率超30%。这一增长主要由英伟达每年迭代的AI加速芯片驱动,目前台积电独家代工英伟达H100、B200等核心AI处理器。

高性能实时控制:贸泽供应英飞凌 PSoC Control C3 MCU,专为工业电机与机器人优化

(2025年7月2日) 全球知名电子元器件授权分销商贸泽电子 (Mouser Electronics) 今日宣布,正式开售英飞凌科技 (Infineon Technologies) 专为下一代电机控制应用打造的高性能 PSoC™ Control C3 微控制器 (MCU)。这款MCU凭借其强大的处理能力、先进的集成特性和优化的电机控制功能,为工程师开发面向工业自动化、电动汽车充电、机器人、服务器电源及智能家电的创新解决方案提供了核心动力。

10万粉丝里程碑!DigiKey登顶B站电子元器件官方号 邀您同庆赢好礼

明尼苏达州锡夫里弗福尔斯市 - 2025年6月30日 - 全球领先的电子元器件和自动化产品分销商 DigiKey 今日宣布,其哔哩哔哩(B站)官方账号粉丝数成功突破 10 万,成为该行业内关注度最高的官方账号。为庆祝这一重要里程碑,DigiKey 将特别抽取 20 位幸运粉丝,赠送精心准备的惊喜礼包。