时钟芯片RTC原理介绍、晶振选型、应用场景

发布时间:2025-06-13 阅读量:213 来源: 我爱方案网 作者:

【导读】【小知识】时钟芯片一种高性能、低功耗、带RAM的实时时钟电路,英文名称:Real-time Clock/Calendar Chip(简称:RTC),可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能。采用IIC通信接口。


时钟芯片的原理


  ●  解析时钟芯片的工作原理


一、时钟芯片的基本结构


时钟芯片是一种集成了计时功能的微控制器,其基本结构包括输入/输出端口、定时器/计数器、中断控制器等。其中,输入/输出端口用于接收外部信号,定时器/计数器用于产生时间基准,中断控制器用于处理定时器的溢出事件。


二、时钟芯片的工作原理


1. 输入/输出端口


时钟芯片可以通过输入/输出端口接收外部信号,以便根据需要调整系统时间。例如,通过串行通信接口(UART、I2C、SPI等)接收计算机或其他设备的时钟信息,或者通过网络接口(如NTP)同步网络时间。


2. 定时器/计数器


时钟芯片内部通常集成了一个或多个定时器/计数器,用于产生时间基准。定时器/计数器的工作方式是通过一个预分频器和一个计数器实现的。预分频器将系统时钟频率降低到合适的计数器时钟频率,计数器则用于计算经过的时间。当定时器/计数器的计数值达到设定值时,会触发一个中断事件,通知系统更新时间。


3. 中断控制器


为了处理定时器的溢出事件,时钟芯片还具有一个中断控制器。当定时器/计数器的计数值达到设定值时,会向中断控制器发送一个中断请求。中断控制器会识别这个请求,并执行相应的中断服务程序(ISR),如更新系统时间、唤醒等待处理的任务等。


4. 系统时间的更新


在系统时间发生改变时,时钟芯片需要执行一系列操作来更新系统时间。首先,通过输入/输出端口接收新的时钟信息;然后,使用定时器/计数器计算经过的时间差;接着,将计算得到的时间差加到当前系统时间上;最后,通过中断控制器通知其他部分系统时间已更新。


时钟芯片与晶振的联系


  ●  时钟芯片的电路设计中常用的时钟晶振频率为什么是32.768kHz?


因为时钟芯片需要精确计算时间,而32.768khz比较容易分频(1hz转换为1s),以便于产生1秒的时钟频率,因此也成为了时钟芯片最佳搭档,我们每天用的手表、手机、电脑上显示作用的钟就是由它演变过来的。


22.png


32.768KHz是一个标准的频率,主要有以下几个方面的参数:尺寸、负载电容、频率偏差、应用范围。按尺寸分主要分2012/3215;根据各公司的设计可用的型号有很多。


时钟系统中,秒是一个重要的时间单位,1秒正是1hz,如果要提高时间精度,那这个1hz必须要准确。我们知道,在数字世界里,只有0和1两种可能,下面看一个计算:


2^15=32768=32.768K


2的15次方正好等于32768,反过来讲,如果要把32.768khz的时钟频率经过15次分频的话,得到的频率正好是1Hz。


时钟芯片应用场景


时钟芯片广泛应用于通信设备、消费电子、工业控制、汽车电子、物联网及智能家居等领域,为各类电子系统提供精准时钟同步和计时功能。产品系列在参数一致情况下可P2P替代国外大部分品牌。


应用场景


  ●  安防监控系统:提供报警、搜索和回访等功能的时间标识,各节点间的时间同步。

  ●  智慧办公:考勤机、门禁系统等需要精准时间记录的场合。

  ●  服务器与网络设备:记录设备工作日志,用于设备管理和故障定位。

  ●  消费电子:数码相机、MP3播放器、电子手表等设备中提供时间显示和闹钟功能。

  ●  智能家居:定时控制家电设备,实现能源管理。

  ●  物联网设备:保证设备精准运行和数据准确记录。


实时时钟(RTC)产品组合


1、带温补功能的高精度RTC。工作温度范围内具备优良的稳定性,精度可达+-3.4ppm@-40~85℃。


23.png


2、低功耗RTC。低电流消耗(典型值为250nA)。


24.png


3、小体积RTC。封装尺寸为3.2*2.5mm,适用于小型化设备。


25.png


4、分离式RTC。设计方案更加灵活。


26.png


相关资讯
晶振起振检测四大核心方法:示波器、万用表、频率计实操指南

晶振作为电子设备的"心跳发生器",其起振状态直接决定系统能否正常运行。本文深度解析四种检测方法的实战要点:示波器法需规避探头电容引发的停振风险,万用表电压法需警惕芯片故障导致的误判,频率计通过波形特征精准锁定起振状态,而听声辨振实为认知误区——人耳可闻的异常声响反而暴露晶振缺陷。随着5G/新能源产业爆发式增长,国产晶振厂商正加速技术攻坚,保障起振检测的可靠性已成为行业刚需。

可编程晶振怎么改变频率

可编程晶振改变频率的核心原理是:通过内部集成的锁相环(PLL)和数字分频/倍频电路,对基础石英晶体产生的固定频率进行精密的数学运算(分频、倍频、分数分频),最终输出一个用户通过数字接口(如I²C、SPI)编程设定的目标频率。

巴克豪森准则:振荡器起振的相位与增益平衡艺术

晶振是电路中可以提供高度稳定时钟信号的元器件。通常一个系统共用一个晶振,便于各部分保持同步,一起“干大事”。比如在我们常用的计算机系统中,晶振可比喻为各板卡的“心跳”发生器,如果主卡的“心跳”出现问题,必定会使其他各电路出现故障。人体的心跳搏动,离不开血液。晶振也是一样,离不开电流。

从XTAL到OCXO:解析五大晶振类型及其技术皇冠

晶振自身产生时钟信号,为各种微处理芯片作时钟参考,晶振相当于这些微处理芯片的心脏,没有晶振,这些微处理芯片将无法工作。晶振的作用就是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振主要运用于单片机、DSP、ARM、PowerPC、CPLD/FPGA等CPU,以及PCI接口电路、CAN接口电路等通讯接口电路。

区域控制架构下低压配电的创新演进与实现路径

在汽车产业加速向"软件定义汽车(SDV)"转型的浪潮下,汽车制造商正以创新突破传统边界,聚焦于在区域控制器中集成受保护的半导体开关。以电子保险丝与 SmartFET 为代表的新型保护器件,不仅能高效保护负载、传感器和执行器,更从根源上提升了功能安全性,实现对功能故障的快速响应与精准应对。区别于传统域架构将软件分散部署于多个 ECU 的模式,区域控制架构采用集中控制与计算的核心思路——将分散的 ECU 软件统一整合至强大的中央计算机,为下游的电子控制与配电系统赋予了更高的灵活性。