革新辅助电源设计:1700V SiC MOSFET赋能20-200W高效系统​

发布时间:2025-07-3 阅读量:1188 来源: Wolfspeed 发布人: wenwei

【导读】在电机驱动、电动汽车、快速充电和可再生能源系统中,低功耗辅助电源常被视为"幕后功臣"——尽管其功率等级远低于主功率系统,却直接影响着整套设备的可靠性与能效。面对提升可靠性、缩小体积、降低成本、规避供应链风险等多重挑战,设计人员亟需突破传统设计局限的创新解决方案。Wolfspeed全新推出的工业级 C3M0900170x 与车规级认证(AEC-Q101) E3M0900170x 碳化硅MOSFET系列,正为20-200W辅助电源设计提供关键赋能,助力工程师在性能与成本的博弈中开辟新路径。


Wolfspeed 推出的工业级 C3M0900170x 和获得车规级认证 (AEC-Q101) 的 E3M0900170x 碳化硅 MOSFET 产品系列,可在 20 至 200 W 范围内增强辅助电源的设计能力。这些电源可再生能源、工业电机控制和车辆电气化等快速增长的市场变得越来越重要。依托 Wolfspeed 可靠的第三代碳化硅技术,并在行业领先的 200 mm 制造工厂独家制造,该产品系列使得工程师能够重新考虑如何解决低功耗辅助电源系统设计时的各种权衡取舍的问题。


17.png


除了 TO-247-3 (D) 和 TO-263-7 (J) 封装外,Wolfspeed 产品组合还增加了一种新型的用以支持工业应用全模塑封装 TO-3PF (M)。此封装通过避免使用绝缘热界面材料,从而降低了组装成本和发生错误的风险。另外,TO-3PF (M) 封装通过将引脚之间的最小爬电增加到 4.85 mm,并且避免了外露的漏极板,从而提高了产品在恶劣环境下的稳健性。


更高的性能和即插即用能力


相比先前的 C2M 1700 V 系列和竞品,Wolfspeed 的 C3M 和 E3M SiC MOSFET 技术带来了多项改进。在新推出的 C3M / E3M 系列中,栅极电荷从 C2M 等效器件中的 22 nC 降低至仅 10 nC,减少了栅极驱动的功率需求,简化了反激式电源中的启动操作。此外,还降低了输出电容,使得 Eoss 降低了 30%,从而减少了开关损耗。


实现系统级改进并非总是那么容易,因为更改设计可能需要集中时间和资源。在大多数现有低功耗辅助电源设计中,Wolfspeed 新系列 900 mΩ 碳化硅 MOSFET 都具备即插即用的兼容性,使您能够充分发挥新器件的优势,而无需进行大量的的重新设计工作。从封装角度来看,TO-247-3(通孔封装)和 TO-263-7(表面贴装)与当今市面上的其他碳化硅和硅器件兼容,无需更改 PCB 布局或散热器附件。


许多辅助电源都配有 12 - 15 V 输出,用于运行其他控制或负载。C3M / E3M 系列可以直接将此电压轨用于反激式控制器和由此产生的栅极电压,无需使用单独的辅助绕组或变压器分接头,即可提供前几代和某些竞品所需的更高 18 - 20 V 电压。


硅和碳化硅 MOSFET 竞品的栅极电压水平范围从 12 V 到 20 V 不等,加剧了设计人员在多源设计方面的挑战。幸运地是,Wolfspeed C3M0900170x 系列可直接支持 12 - 18 VGS。得益于优化调整的内部栅极电阻,Wolfspeed 器件可在高达 22 VGS 的电路条件下工作。在栅极电压 > 18 V 的设计中,可以使用齐纳二极管代替外置栅极电阻,将驱动电压降低至 12 - 18 V 范围以内。


18.png


将 RG_EXT 替换为 3.3 V 齐纳二极管,以降低 MOSFET 栅极处的 VGS


升级硅基系统时的性能改进


虽然高压 (1500 - 2000 V) 硅 MOSFET 也可用于此系统空间;但缺点是,由于1 - 2 Ω 器件每单位面积 RDS(ON) 较高,造成价格往往比较昂贵,并且损耗较高。取而代之地是,可以利用双开关反激式拓扑来选择较低电压的硅器件。虽然此类器件比较便宜,但双开关拓扑的设计更加复杂,需要更多组件和空间。


碳化硅 MOSFET 非常适合此类电压等级,并可轻松实现适用于辅助电源应用的低 RDS(ON)和低开关损耗。设计人员能够利用单开关反激式拓扑,这可以消除了双开关设计所需的额外电路和设计复杂性。


19.png


双开关拓扑需要更多组件和额外的 PCB 面积


20.png


采用碳化硅 MOSFET 的简化单开关设计节省了空间和成本。


向所有应用的耐用性设计


在许多需要长寿命和可靠运行的工业和汽车应用中,都能发现辅助电源的身影。C3M / E3M 系列额定工作结温为 -55 °C 至 +175 °C,使得其适用于极端温度条件。C3M0900170D、C3M0900170J 和 E3M0900170D 均通过 THB-80 (HV-H3TRB) 测试,其测试条件为85% 湿度、85 °C 环境温度下施加1360 V 阻断电压进行持续 1000 小时的测试。


在讨论半导体在不同应用中的耐受性时,必须考虑宇宙辐射引起的失效率(FIT)。Wolfspeed C3M / E3M 系列通过改进器件设计和减小芯片尺寸,进一步降低了旧有 C2M 系列本已很低的失效率(FIT)。与上一代相比,使用 Wolfspeed 第三代器件的典型 1200 V母线电压反激电路在海平面连续运行 10 年后,失效率(FIT) 降低了 65%。


21.png


启动碳化硅系统开发的设计资源


为加速基于1700V SiC MOSFET的辅助电源开发,Wolfspeed提供全方位设计资源支持。从封装选型指南到拓扑结构优化方案,以下工具助您快速实现系统升级:


  ● 应用笔记:反激式电源设计中栅极驱动配置实践

  ● 仿真模型:SPICE模型助力电路性能预验证

  ● 评估套件:TO-247/TO-263封装即用测试平台


探索C3M/E3M 900mΩ系列如何以更少元件、更高可靠性重塑您的电源架构——访问Wolfspeed设计中心获取完整资源库。


相关资讯
SiC赋能:工业充电器隔离DC-DC拓扑选型全攻略

碳化硅(SiC)功率器件正以颠覆性优势引领工业充电器变革——其超快开关速度与超低损耗特性,驱动功率密度实现跨越式提升,同时解锁了传统IGBT无法企及的新型拓扑架构。面对工业应用对高效隔离式DC-DC转换的严苛需求,本文将深入解析从600W至深入解析从600W至30kW全功率段的拓扑选型策略,揭示SiC技术如何成为高功率密度设计的核心引擎。

车规晶振选型指南:3分钟破解ADAS时钟稳定性难题

在汽车电子智能化、网联化与电动化深度融合的浪潮中,车载时钟系统的精度与可靠性正成为决定整车性能的核心命脉。作为电子架构的"精准心跳之源",车规级晶振的选型直接影响ADAS感知、实时通信、动力控制等关键功能的稳定性。面对严苛路况、极端温差及十年以上的生命周期挑战,工程师亟需兼具高稳定性与强抗干扰能力的时钟解决方案——小扬科技将聚焦车规级晶体/晶振核心参数,3分钟助您精准锁定最优型号。

破局图像传感器选型难题:成像性能、系统兼容与工具支持的协同​

在技术创新的浪潮中,图像传感器的选型是设计与开发各类设备(涵盖专业与家庭安防系统、机器人、条码扫描仪、工厂自动化、设备检测、汽车等)过程中的关键环节。选择最适配的图像传感器需要对众多标准进行复杂的综合评估,每个标准都直接影响最终产品的性能和功能。从光学格式(Optical Format)和动态范围(Dynamic Range),到色彩滤波阵列(CFA)、像素类型、功耗及特性集成,这些考量因素多样且相互交织、错综复杂。

破解时钟难题:5大场景下压控晶振选型黄金法则(附参数对照表)

压控晶振(VCXO)作为频率调控的核心器件,已从基础时钟源升级为智能系统的"频率舵手"。通过变容二极管与石英晶体的精密耦合,实现电压-频率的线性转换,其相位噪声控制突破-160dBc/Hz@1kHz,抖动进入亚纳秒时代(0.15ps)。在5G-A/6G预研、224G光通信及自动驾驶多传感器同步场景中,VCXO正经历微型化(2016封装)、多协议兼容(LVDS/HCSL/CML集成)及温漂补偿算法的三重技术迭代。

核心差异剖析:晶振 vs. 实时时钟芯片(RTC) - 脉冲源与时间管理者的角色划分

在电子设备的精密计时体系中,晶体振荡器与实时时钟芯片如同时间系统的"心脏"与"大脑":晶振通过石英晶体的压电效应产生基础频率脉冲,为系统注入精准的"生命节拍";而实时时钟芯片则承担时序调度中枢的角色,将原始频率转化为可追踪的年月日时分秒,并实现闹钟、断电计时等高级功能。二者协同构建现代电子设备的"时间维度"。