发布时间:2010-11-12 阅读量:1079 来源: 发布人:
基于AD73360多功能电表的中心议题:
* 多功能电能表系统设计
* 电表硬件设计
* 控制及数据处理的程序设计
摘要
本文介绍了基于AD73360芯片的多功能网络电能表的系统总体设计。通过FPGA与AD73360芯片相连接,由FPGA给AD73360芯片写控制字,然后再对采集的数据进行处理。重点介绍了基于AD73360的多功能网络电能表的硬件设计,同时也介绍了FPGA的VHDL设计。本设计具有电力参数监测、电能质量分析、分时段电能计量、故障录波和网络远程抄表等功能。
本设计是基于ADI公司的AD73360芯片的多功能网络电能表。传统的多功能电能表通常使用专用的电能计量IC计量或前端使用AD芯片采样数据,然后使用DSP或MCU对数据进行处理。若使用专用电能计量IC,还需要额外的处理器对电表进行控制,增加了电能表的成本;若使用第二种方案,限于成本和DSP或MCU的处理能力,会影响电表的实时处理能力。基于以上原因,本设计中前端使用AD73360芯片对电压和电流进行采样,后端使用FPGA对采集的数据进行处理,同时对电表进行总体控制。由于FPGA采用纯硬件的工作方式,实时性强;同时,由于FPGA强大的处理能力,可以使用一片FPGA完成全部的数据处理和控制工作。这样既可以简化硬件设计,又可以减低成本。
AD73360是ADI公司一款6通道模拟前端处理器,特别适合于电能计量[1]。该芯片具有6个16位A/D转换通道,每个通道都可以同步采样,同时可以保证从直流信号到4 kHz信号带宽的77 dB的信噪比。每个通道还具有独立的可编程输入放大器(PGA),其放大系数可以从0~38 dB可调。该芯片通过设置,可以提供4种采样频率,分别为64 kHz、32 kHz、16 kHz和8 kHz(由16.384 kHz的主时钟分频得到)。
1 多功能电能表系统设计
多功能网络电能表(以下简称电表)由数据采集、控制与处理、电源、网络接口、显示、存储和日历时钟等部分组成,如图1所示。数据采集部分由精密小型互感器、信号调理电路以及AD73360芯片构成。控制与处理部分采用Altera公司的FPGA芯片Cyclone II 2C35F484C8。电源模块为整个电能表系统提供电源,共有2路直流电源输出,一路供给数据采集板,一路供给电能计量SoPC芯片。考虑电磁兼容试验,要求电源系统能抑制高频脉冲干扰且过压自动保护。网络接口部分采用DMA9000A网络芯片,使用RJ-45接口,本系统支持以太网协议。显示部分采用高品质的液晶显示模块,每屏可以显示8×4个汉字(16×16)或128×64个像素的图形。存储模块采用IIC总线与一块E2PROM通信,用于数据冻结。日历时钟则使用专用的日历时钟芯片,为系统提供日期信息。表1为电表的具体功能和设计指标[2]。
2 电表硬件设计
2.1 数据采集模块硬件设计[2]
从图1可以看出,数据采集模块由互感器、信号调理电路和AD芯片3个部分组成。本系统三相电压信号采用单端输入方式,三相电流信号采用差分输入方式。由于本系统采用3.3 V为AD73360芯片供电,因此输入电流设置在10 mA,输入电压设置在700 mV左右。
2.1.1 电流输入电路设计
电流输入使用专用的电流互感器将输入电流降至10 mA左右。本系统选用了哈尔滨三江达电力技术有限公司生产的YWH型电能表专用互感器。YWH系列互感器是微型互感器的一个分支产品,是为宽量程电子式电能表配套设计的新一代微型精密电流互感器,工作电流范围宽(可4~10倍过载),误差线性好(比差小于0.01 %,角差小于0.3′),采用阻燃ABS塑料外壳,环氧树脂封装,绝缘强度高,外形美观,并有多种规格可供用户选择,满足不同的安装需要。本次设计选用了YWH-1型,其电流比为1.5(6)A/5(20)mA,二次负载电阻5~20 Ω,准确度为0.1级。
2.1.2 电压输入电路设计
三路电压信号直接由220 V电压通过电阻网络降至700 mV左右,每路电压信号输入电路由5个204电阻和一个332电阻构成,确保将220 V市电降为700 mV左右输入,以适应AD73360的需要。
2.1.3 信号调理电路设计
由于本系统电压和电流信号采用不同的输入方式,因此需要不同的信号调理电路。电压调理电路中使用RC电路构成抗混叠滤波器,同时确保输入AD的信号频率小于0.5倍的AD采样率。
2.1.4 AD73360电路设计
VINP1-6和VINN1-6为信号输入引脚;MCLK与系统主时钟相连。由于AD73360设计时就考虑到了与DSP的简单接口[1],因此,SCLK、SDO、SE、SDI、SDIFS和SDOFS在设计时就可以与FPGA的I/O口直接相连。
2.2 控制及数据处理模块[3]
本系统的控制及数据处理采用Altera公司的FPGA芯片,Cyclone II 2C35F484C8。为了简化本系统的硬件设计难度,直接采用成品FPGA开发板。这样,只需要设计外围的日历时钟芯片、LCD和网络接口电路即可。
3 控制及数据处理的程序设计[4]
本系统采用FPGA,同时配合Altera公司NIOS II软核的方式对系统进行控制并对采集的数据进行处理[5],最终使用μC/OS II 操作系统将整个系统整合。该设计共分为两个部分,一个部分为控制部分,包括对AD芯片、网络接口等模块的控制;另一部分是数据处理部分,主要负责对AD73360采集来的数据进行处理。
3.1 CPU设计
该芯片内部包括AD控制器、FIFO、电能计量、配置寄存器、NIOS II软核微处理器、日历时钟接口、数字频率变换器DFC(Digital to Frequency Converter)、IIC接口以及LCD控制器等部分。其结构如图2所示。
其中,AD控制器的输入为信号采集板上采集到的三相电压和三相电流(6个通道的串行数据),AD控制器是按照美国ADI公司16位的∑-△A/D芯片AD73360的时序,将输入的6个通道的串行数据转换成并行数据并存储在相应的FIFO中;6 通道的FIFO保存AD控制器送来的6 通道1个周波的AD 数据,以便后面的运算使用。这样做还有一个好处就是电能计量模块可以实现流水线结构,加快运算速度;电能计量模块主要是利用FPGA实现电能的有功、无功和视在功率的计量。配置寄存器中保存配置数据、历史电量数据、冻结数据等;NIOS II软核微处理器完成整个电能计量芯片的调度工作;日历时钟接口与外部的日历时钟芯片相连,为芯片提供时钟信息,供NIOS II软核微处理器使用,从而构成复费率电能表。日历时钟芯片选用美国达拉斯公司的涓流充电时间芯片DS1302;DFC变换就是将计量后的电能值转换成脉冲的个数输出,以便校表;IIC接口控制外部的IIC只读存储器AT24C256,AT24C256是美国ATMEL公司的二线串行电擦写可编程只读存储器;LCD 控制器实现外部LCD 的驱动功能。
3.2 AD控制设计
AD接口模块完成对AD73360的初始化(设置分频系数、AD采样率、可编程增益、工作模式)、输出数据的读取并完成串/并转换。本次设计中FPGA的主频为50 MHz,经试验发现AD的SCLK最高工作在2.048 MHz,这样FPGA可以确保准确采集SCLK信号。AD的晶振频率为16.384 MHz,因此设定SCLK的分频系数为8。
为了减小亚稳态问题影响,确保可靠工作,采用了全同步设计,采用20 MHz频率高速采集SDOFS、SCLK,并对其进行了两级锁存,大大减少了亚稳态问题。设计中采用两级锁定,经逻辑运算即可得到SDOFS的正沿和SCLK的正沿负沿。图3为FPGA上电初始化配置AD73360的modelsim 6.1f仿真时序图,图中COM为FPGA配置AD73360寄存器的数据,SDI为COM数据的串行输出。
图3 配置AD仿真时序图
图4为使用逻辑分析仪实测的数据。
图4 AD73360采样的实测数据
3.3 电能计量算法设计
电能计量的算法比较复杂,如果直接使用VHDL编写比较困难。为了降低开发的复杂程度,在该模块设计时,使用了DSP Builder。DSP Builder是Altera公司提供的以Simulink为平台的图形化的设计软件[6]。它可以先由Simulink建模,然后通过DSP Builder提供的编译器将Simulink模型转换为VHDL语言,这样就极大地简化了设计的难度和开发周期。
本文介绍了基于ADI公司AD73360芯片的多功能网络电能表的系统设计。AD73360特别适合于电能计量使用,同时其针对DSP的简易接口设计,使得硬件电路设计更加简单。配合FPGA较强的处理能力,使得整个系统只需要一片FPGA便可以完成全部的控制和电能计量任务,不需要再使用额外的芯片。同时也使得系统成本下降,开发周期大大缩短。
参考文献
[1] AD73360 datasheet.Analog Device Inc.,2000.
[2] 高鹏.Protel 99入门与提高[M].北京:人民邮电出版社,2000.
[3] 王成.Altera FPGA/CPLD设计(基础篇)[M].北京:人民邮电出版社,2005.
[4] 徐欣.基于FPGA的嵌入式系统设计[M].北京:机械工业出版社,2005.
[5] 彭澄廉.挑战SOC-基于NIOS的SOPC设计与实践[M].北京:清华大学出版社,2004.
[6] 张森.MATLAB仿真技术与实例应用教程[M].北京:机械工业出版社,2004.
本期EIT探讨了从工业4.0到工业5.0的转变,以及即将实现的技术进步
CWGCE2025西部芯博会总规模将达到60000㎡,同期举办光电展+工业展+智能展+军工展等相类展会,将有更多集成电路行业新装备、新产品、新材料、新技术、新工艺、新趋势及新应用集中亮相
CWGCE2025西部芯博会总规模将达到60000㎡,同期举办光电展+工业展+智能展+军工展等相类展会,将有更多集成电路行业新装备、新产品、新材料、新技术、新工艺、新趋势及新应用集中亮相
CWGCE2025西部芯博会总规模将达到60000㎡,同期举办光电展+工业展+智能展+军工展等相类展会,将有更多集成电路行业新装备、新产品、新材料、新技术、新工艺、新趋势及新应用集中亮相
作为我国中西部地区历史最悠久的光电领域全产业链综合性年度盛会,规模和档次逐年增加和提高,CCWPE2025又新增了多个行业组织联办单位,同时将进一步扩容和丰富论坛内容。