电子式电压互感器相关问题探索

发布时间:2010-11-22 阅读量:1699 来源: 发布人:

【中心议题】

  • 介绍了电子式电压互感器的电磁兼容设计
  • 阐述了电子式互感器的保护措施及相应的系统设计

【解决方案】

  • 采用二次计量系统过电压保护装置
  • 阻容分压型传感元件的合理运用

1传感器的高压端电子电路供能问题的研究

对电子式互感器的输出信号在高压侧实现就地数字化,目的为了使被测量在信息传输过程中,不会产生新的误差,不受负荷影响。因此,对高压端信号处理部分的电子电路的供能是保证传感器可靠、稳定工作的关键因素,也是各种混合式电子互感器都普遍存在的技术难题。而且高压侧电源必须是悬浮式的,才能保证实现高低压侧电信号的完全隔离。根据目前国内外许多单位都在对混合式光电互感器高电位侧的电源供电问题进行研究情况,可行的技术方案由以下几种:(l)线圈从母线采电的供能方式。该供电方式是利用电磁感应原理,通过普通铁磁式互感器从高压母线上感应得到交流电电能,再经过整流、滤波、稳压后为高压侧电路供电。(2)高压电容分压器的供电方式。在高压母线与地之间连接高压电容分压器,从高压母线上直接取得能量,经过整流、滤波、稳压后,向高压侧电路供电。(3)蓄电池供能方式。这是一种采用蓄电池对高电位侧的电子线路进行供电的方式。

2电子式电压互感器的电磁兼容设计

电子式互感器一般安装于户外线路上,其工作环境恶劣,电子线路会受到来自外部环境的和电子式互感器自身的各种电磁干扰的影响,这些冲击电压或静电放电的干扰都会危害电子式互感器的设备安全,因此提高电子式互感器电磁兼容(EMC)能力,是保证其在电力系统现场能安全可靠的运行的重要步骤。对电子式互感器的抗干扰能力的设计,目前只能从已有的经验出发,尽量减少电磁干扰所造成的不利影响,降低对电力系统的安全运行的危害。

由于传感元件的电子线路处于高压端,电磁环境复杂,外界的电磁干扰信号比较强,干扰源较多,因此在所采用的抗干扰设计中,目前最常用的手段就是利用屏蔽技术来阻挡或减少电磁辐射干扰能量传输。屏蔽是采用导电或导磁体的封闭面(例如铁或铝材料的金属盒)将其内外两侧的空间进行电磁性隔离,将从一侧空间向另一侧空间传输的电磁能量抑制到了极小量,从而达到减弱外部干扰信号的效果。接地是提高电子设备电磁兼容能力的另一种重要方法。在电子式互感器的设计中采用浮地技术,将信号处理的抗干扰接线接在一个公共屏蔽层,尽量减少电源线同机壳之间的分布电容,可以使得在电磁干扰作用时,工作电源同机壳的电位同步浮动,大大降低了干扰造成的流过电源的浪涌电流,从而增加了抗共模干扰的能力。若利用双屏蔽电缆进行信号传输,可以采用在电缆两侧各用一层屏蔽电缆接地;外层屏蔽两侧接地,内层屏蔽一侧接地;外层屏蔽一侧接地,另一侧通过一个电容接地,内层屏蔽一侧接地等3种方法解决变电站电缆的EMC要求。对于工作电源的干扰的抑制,主要是采用电源滤波器的方法实现。同时对电源部分进行屏蔽以消除其辐射干扰;另外,数字电源与模拟电源的分开对于信号处理电路的工作亦大有裨益。

 

3电子式互感器的保护措施

在日趋庞大而复杂的电力系统中,直击雷和感应雷的冲击、电力系统运行方式变化、开关频繁操作、负荷突变以及系统短路故障等现象发生频繁,使得电力系统中互感器及二次电能计量系统出现过电压的几率大大提高。由于电子式互感器中会采用电压敏感性微电子芯片、半导体元件等,在冲击电压作用下,受破坏的机率急剧增加。作为电力系统不可缺少的一个重要组成部分,电能计量系统会因过电压的侵害会导致无法工作,因此必须采用二次计量系统过电压保护装置来防止因为电能表的损耗而导致的PT二次断路器开断,避免计量系统的瘫痪所带来巨大损失。

作用在PT二次计量系统的过电压有感应雷过电压、操作过电压、系统短路故障过电压、谐振过电压和祸合过电压。其中以感应雷过电压和操作过电压在PT二次系统产生的过电压危害最大。此类过电压幅值高、冲击时间短,极易损坏PT二次系统计量设备。过电压保护器可分为开关型和限压型。

开关型保护器的主要元件为放电管限压型保护器的主要元件为瞬态抑制(TVS)二极管以及氧化锌压敏电阻(MOV)。气体放电管的特点是泄流大,平时工作处于断开状态,无漏电流,但是其放电反应慢,放电时间长。TVS二极管反应最快,可达10.125,但是承受浪涌能力弱,关断时间长。MOV残压低,无续流,动作时延小,陡波响应特定好,流通容量大,吸收过电压的能力强,可作为保护器限压主元件。根据电能计量系统准确性、稳定性、连续性和安全可靠的运行的工作特点,采用合理且经济的保护设备。

4阻容分压型电子式电压互感器系统设计

从上面可知,阻容分压型传感元件是应用于高压及超高压电力网络进行电压测量的优良方案,同时作为新型电子式互感器的一种,必须考虑其对信号的有效传输。

如果二次侧的测量仪表采用模拟接口,在传感元件后联接小功率PT实现电气隔离,然后在PT的二次侧增加积分环节以及模数转换环节等。采用这种方法主要优点是高压侧阻容分压互感器作为无源元件传变电压,简化了传感头部分的电路,信号处理电路在低压侧,便于实现。缺点是前端作为模拟信号输出,信号传输电路采用铜导线,强电磁环境中抗干扰性能差。

电网自动化的迅速开展使得数字化一次设备的开发应用越来越受重视。因此对考虑阻容分压型互感器的数字化接口时,应当在高压侧进行信号处理后,再由光缆向合并单元进行信号传输。高压侧的信号处理包括滤波、积分、A/D转换等部分在现有条件下宜采用模拟积分器来实现对微分信号的还原。直接A/D转换相较于VFC的转换方式,技术比较成熟和完善,转换精度不受系统谐波分量变化及频率波动的影响,采样方法相对可靠,是一种适合于测量和保护控制通用目的的信号处理方案。

5结语

本文探讨了复合式电压/电流传感器的实用化过程中出现的高压端电子电路供能问题、电磁兼容设计和电子式互感器的保护措施,并提出阻容分压型电子式互感器的设计构想。

相关资讯
Teledyne推出三款航天级CMOS传感器:攻克太空成像可靠性难题

Teledyne e2v最新推出的三款航天级工业CMOS传感器(Ruby 1.3M USVEmerald Gen2 12M USVEmerald 67M USV),分辨率覆盖130万至6700万像素,均通过Delta空间认证及辐射测试。这些传感器在法国格勒诺布尔和西班牙塞维利亚设计制造,专为极端太空环境优化,适用于地球观测卫星恒星敏感器宇航服摄像机及深空探测设备。产品提供U1(类欧空局ESCC9020标准)和U3(NASA Class 3)两种航天级筛选流程,并附辐射测试报告与批次认证。

英特尔Nova Lake桌面处理器解析:52核异构设计颠覆性能格局

英特尔下一代桌面处理器Nova Lake-S(代号)的完整规格于2025年6月密集曝光,其颠覆性的核心设计接口变革及平台升级,标志着x86桌面平台进入超多核时代。本文将结合最新泄露的SKU清单与技术细节,系统性解析该架构的革新意义。

高通双芯战略落地:骁龙8s Gen5携台积电N3P制程卡位中高端市场

根据最新行业信息及供应链消息,高通2024年芯片战略路线图逐渐清晰。除下半年旗舰平台Snapdragon 8 Gen 2 Elite(代号SM8850)外,公司还将布局定位精准的次旗舰产品线——Snapdragon 8s Gen 5(代号SM8845),通过架构复用策略实现性能与成本的动态平衡,进一步完善中高端安卓终端市场布局。

三星430层V10 NAND量产推迟至2026年,技术瓶颈与成本压力成主因

据供应链最新消息,三星电子原定于2025年下半年启动的430层堆叠V10 NAND闪存大规模量产计划面临延期。行业内部评估显示,该项目预计推迟至2026年上半年方能落地,技术实现难度市场需求波动及设备投资压力构成核心制约因素。

Littelfuse KSC PF系列密封轻触开关:灌封友好型开关时代来临

Littelfuse推出的KSC PF系列密封轻触开关专为严苛环境设计,采用表面贴装技术(SMT),尺寸紧凑(6.2×6.2×5.2 mm),具备IP67级防护(完全防尘、1米水深浸泡30分钟不进水),并通过延伸式防护框设计优化灌封工艺。灌封是将PCB元件封装在树脂中以抵御腐蚀、振动和热冲击的关键工艺。传统开关因扁平防护框限制树脂覆盖深度,而KSC PF的延伸结构允许更深的灌封层,提升对PCB整体元件的保护,同时支持鸥翼式或J形弯脚端子选项,适用于工业自动化、医疗设备、新能源汽车等高可靠性领域。