电容器与声音的关系

发布时间:2010-12-14 阅读量:1764 来源: 发布人:

中心议题:
    * 电容器和声音的关系
    * 各种分频线路所使用的电容器
解决方案
    * 完整的分频线路的每一音路皆须使用相同数目的电容器及电感器
    * 电容器的误差值要精确,耐压值要足够,损失角要低


众所知,电容器(C)于声音线路上是和电感器(L)组成LC网路(NETWORK)用于分频线路-功率放大器(POWERAMPLIFIER)的输出综合信号通过此LC网路时,会依所设计的分频点及音路,将各高低频率分开输往各不同的扬声器(如TWEETER、MID-RANGE、WOFFER、SUB-WOOFER..等)

LC网路依各厂工程师的设计,有从最简单的二音路(2WAY)高/低音,普遍的三音路(3WAY)高/中/低音,高级的四音路(4WAY)高/中/低/超低音或超高/高/中/低音,到顶级的五音路(5WAY)超高/高/中/低/超低音,甚至更多音路都有•

LC网路的线路也依各厂工程师的设计,每一音路有从最基础的1只电容1只电感,2只电容2只电感,到数只电容数只电感都有•

因信号通过电容器其相位倒退90度(假如此电容是无损失的话-实际上来说这是不可能的),而信号通过电感器时其相位前进90度,所以为使信号相位还原于原相位,通常完整的分频线路的每一音路皆须使用相同数目的电容器及电感器•(当然也有人执意用不同的数目来作为信号相位差)

因为所有的声音从功率放大器到扬声器间都要通过LC网路(除非是阳春型),所以此两种元件对于声音的重要性实不容忽视,说其重要性和单体喇叭或音箱相同也不为过•

电容器和声音的关系:

精确的分频点与电容器
 


如前所言电容器和电感器组成LC网路为分频线路,其公式是
F(分频频率)=2π√(LxC)
所以要分类点的分频频率精确,电容器的电容值也相对的要精确,因此用于分频线路上的电容器其误差值都较准确,如±20%±10%±5%甚至于±2%±1%都有•


信号(SIGNAL)与电容器极性(POLARITY):

因为功率放大器所输出的是信号电压(也可称为交流电),所以用于分频线路上的电容器必须是"无极性"(NON-POLARIZED)•


信号(SIGNAL)与电容器耐压(WV):

为了承载功率放大器所输出的信号电压,而用于分频线路上的电容器其耐压值必须要高于功率放大器所设计的输出信号电压PP(PEAK-PEAK)值,一般都高出30%-40%当作安全值(也不须要求过高的耐压值以免增加无谓的成本)•绝大部份功率放大器所输出的信号电压都不超过30VAC,所以用耐压值 50V就可,当然耐压值100V更加保险•

**承载功率(POWER)的大小和电容器的耐压值没有影响,而是和电容器的可承载涟波电流(RIPPLECURRENT)即损失角值
(DISSPATIONFACTOR)有关•


信号功率(POWER)与电容器的损失角:
 


上言电容器的承载功率大小和损失角值有关连的,损失角值越低则承载功率越大,损失角值越高则承载功率越小•

何谓损失角(DISSPATIONFACTOR-又简称DF)?信号通过电容器之相位角度与-90度之夹角称为损失角 (DISSPATIONFACTOR-又简称DF)•标准电容器其相位角为负90度(损失角为零,ESR阻抗值也是为零),且DF值越低,ESR阻抗值也越低•

如信号通标准电容器其相位角为负90度,所以电容器相位角越接近-90度则其损失角值越低,也因此承载功率也越大,若假设有标准电容器,因其相位为-90度,也就是说损失角值为零,ESR阻抗值也是零,如此便可承载无限大的功率•

音质(TONE)与电容器的损失角:

损失角值的高低和电容器的等级串联内阻值(ESR)成正比,损失角值越低则内阻值越低,损失角值越高则内阻值越高,是故音质好坏和损失角质高低成反比,损失角值越低则内阻值越低,因此音质越好,损失角值越高则内阻值越高,因此音质越差•


频率响应(FREQUENCYRESPONSE)与电容器的损失角:

同一只电容在不同的频率下工作,它的损失值及容量值是不相同的,通常而言工作频率越高损失角值会越大(容量值则会越小),变化率的大小和此电容量的损失角值的高低成正比,损失角值越低变化率越小,损失角值越高变化率越大,所以说频率响应与电容量的损失角值是息息相关的,损失角值越低的电容器,因其在各种频率工作时其损失角值及容量值的变化率较小,如此频率响应会越平(可通过越宽的频率),损失角值高的则相反•
 


**大部份的分频用电容器可指定其测试频率在120HZ或1KHZ下要求所能容许的最高损失角值(例如10%5%4%3%1%…..),但是为了要使频率响应更平以求尽善尽美(一般都是要使高频即高音的曲线不要被拉下),也可要求电容器指定其测试频率在于较高的频率下(例如于3KHZ6KHZ10KHZ甚至20KHZ,最好是和所设定的分频点相同的频率)设定最高能容许的损失角值及额定电容值-关于此点音响专业的电容器业者可以配合做到此项要求•

声音传送速度(SPEEDYOFTRANSMISION)与电容器的损失角:

如前述损失角值的高低和电容器的等级串联内阻值(ESR)成正比,是故除了音质的好坏和损失角值有关连,声音传送速度也和损失角值息息相关,损失角值越低则内阻值越低也因此传送速度也较快好,损失角值越高的则反之•

由上述应以了解电容器的好坏和音响喇叭(不论是家用或是车用)有很重要的关连,电容器就好似音响的动脉,好的音响分频线路就要有好的电容器-也就是说电容器的误差值要精确,耐压值要足够,损失角要低•

简述各种分频线路所使用的电容器:
电容器种类及
其最高DF值@1KHZ
一般容量范围及
公差值
 

特点
PP塑胶膜
0.04%━0.10%
0.01μF~47μF
±1%~±10%
损失角最低速度最快频率最高
声音最清成本最高
适用于:超高频高频高功率顶级品
PE塑胶膜
0.4%━1.00%
0.1μF~100μF
±1%~±10%
损失角低速度快频率高
声音亮成本高
适用于:高频中高功率高级品

低损失NP电解
2%3%4%
5%6%10%
1μF~300μF
±2%~±10%
损失角低速度可频率中高
声音柔成本适中
适用于:中高频中高功率高级品

一般NP电解
10%12%15%
1μF~1000μF
±10%~±20%
损失角高速度慢频率中低
声音糊成本最低
适用于:低功率普级品
相关资讯
Nexperia发布1V保护二极管矩阵,破解高速接口ESD防护设计瓶颈

在USB4®和Thunderbolt™接口传输速率突破10GHz的产业背景下,静电放电(ESD)和意外短路引发的系统失效已成为消费电子与通信设备的核心痛点。传统保护方案在射频性能与防护强度间的取舍矛盾,特别是不合规Type-C接口中Vbus与TX/RX短路风险,迫使行业寻求突破性解决方案。Nexperia最新推出的五款1V保护二极管,通过创新架构实现鱼与熊掌兼得的技术跨越。

璞璘科技突破纳米压印技术瓶颈 国产高端半导体设备实现交付

2025年8月1日,璞璘科技自主研发的首台PL-SR系列喷墨步进式纳米压印设备正式通过验收并交付国内特色工艺客户。该设备攻克了步进硬板非真空贴合、喷胶与薄胶压印、压印胶残余层控制等关键技术,标志着我国在高端半导体装备领域取得实质性突破。

台积电强化技术安全机制,2nm制程研发涉潜在风险事件引关注

全球晶圆代工龙头企业台积电在推进2nm先进制程量产的关键阶段,于内部安全审查中发现异常活动。公司声明显示,其监控系统侦测到未经授权的技术信息访问行为,已对涉事人员解除雇佣关系,并启动法律程序追责。

Onsemi发布2025 Q2财报:稳健业绩驱动半导体复苏​

在2025年8月4日,全球领先的半导体解决方案供应商Onsemi正式发布了其2025年第二季度财务报告。本季度,公司展现了稳健的经营表现,反映其在功率半导体领域的战略优势。随着汽车电子化和人工智能应用的加速渗透,Onsemi通过持续优化业务模式,在充满变化的市场环境中取得可喜进展。

全球智能手机单季收入首破千亿 高端战略驱动价量增长分化

据Counterpoint Research近期发布的报告,2025年第二季度,全球智能手机市场呈现显著收入增长,总收入达1000亿美元以上,同比提升10%。这一数据创下了自统计以来第二季度的收入新高峰。尽管出货量仅同比增长3%,不足总量的显著跃升,但市场动能源于平均售价(ASP)的大幅上涨。报告显示,本季度ASP同比增长7%,达到约350美元的历史高位,反映出消费者对高端设备的强劲需求推动了整体盈利能力提升。这种收入与出货量的差异化增长,突显了市场结构正加速向高端化转变。