发布时间:2010-12-27 阅读量:3938 来源: 发布人:
【中心议题】
【解决方案】
场效应晶体管(FET)是一种利用电场控制半导体材料导电性能的有源器件,是现代电子学中应用最广泛的器件之一,在数据存储、逻辑运算、光电集成和放大电路以及平面显示等领域发挥着不可替代的作用。近几十年来,无机FET的腾飞,极大地推动了整个电子信息技术的快速发展。然而无机FET存在接近小型化的自然极限、成本较高和制备大面积器件较困难等问题。随着有机材料半导体特性的发现以及性能的不断改进,利用有机半导体材料来替
代FET中的无机半导体层自然成为重要的研究课题。这种新型的FET被称为有机薄膜场效应晶体管(OFET)。
与无机FET相比,OFET有以下的突出优点:1)易于制备大面积器件;2)有机物易得,通过对有机物分子的化学修饰可以方便地调节场效应晶体管的性能;3)制备工艺简单,成本较低;4)有机物柔韧性好,可以弯曲,易于制成各种形状等。OFET自从1986年首次出现以来,在材料性能和制备技术开发上都取得了明显的进步,已经应用于电子报纸、传感器件、包括射频识别卡在内的存储器等领域。目前,用于制备OFET的有机半导体材料包括小分子和聚合物。以小分子作为半导体层的有机场效应晶体管,具有较高的场效应迁移率,可达1~10cm2/V·s。最近有报道,由高纯并五苯单晶所制作的OFET,其迁移率高达35 cm2/V·s,不过其机械性能和稳定性都不及聚合物,且成膜大都采用真空蒸镀方法,制造成本较高。虽然聚合物场效应晶体管的迁移率比小分子场效应晶体管的迁移率小3~5个数量级率,但由于其具有机械性能好、热稳定性高、成膜方法简单经济以及适合制备大面积器件等特点,发展迅速,目前有些聚合物场效应管的性能已经达到或接近小分子及齐聚物场效应管的水平。因此,可溶性聚合物场效应晶体管被认为是未来有机电子学及微电子学的发展方向。
PFET的基本结构及工作原理
PFET器件的结构和基本性能与无机薄膜晶体管类似,是一种电压受控三端器件,通过栅极电压调控半导体层中沟道电阻的大小来控制源极和漏极间的电流。其基本结构如图所示,图中和分别代表源漏电压和栅极电压。
作为有机聚合物芯片,PFET器件是实现逻辑功能的最基本单元,其性能参数主要包括场效应迁移率(μF)、开关电流比(Ion/off)和跨导(gm)。场效迁移率描述有机活性层中的载流子在外加电场作用下的输运速度,决定器件的开关速度。
开关电流比通常是指在某一饱和区源漏电压下,器件处于开启状态(开态)和关闭状态(关态)时的源漏电流之比。关态电流实际上是器件的漏电流,越小越好,它影响器件的功耗大小。在逻辑电路芯片中器件的开关电流比一般应高于106。与无机薄膜晶体管相似,器件的性能参数通常可以通过其输出特性曲线和转移特性曲线来表征。利用肖特基模型,PFET器件的漏电流与源漏电压和栅电压的关系可表示为
式中,W和L分别为PFET的导电沟道宽度和长度;Cox为PFET栅绝缘层单位面积电容;为场效应管的阀值电压。
在传统的无机场效应晶体管中,活性半导体层一般为轻掺杂的硅、III-V元素化合物,比如GaAs。器件工作时,由外加栅电压引起绝缘层-半导体界面处半导体一侧产生少数载流子积累,导致沟道层形成反型层或强反型层,使得从源、漏极注入的载流子能顺利地通过沟道薄层,产生漏电流。在PFET中,活性半导体层由有机聚合物半导体构成。与无机材料完全不同的是,PFET器件工作时,外加的栅电压需引起沟道薄层多数载流子的积累,因此,漏电流是沟道薄层中多数载流子输运的结果。这是由于这两种不同类型的半导体中电荷输运的机理不同所致:在单晶硅等长程有序的无机半导体中,载流子输运过程发生在导带或价带内;而有机聚合物半导体通常具有长程无序、短程有序的特点,电荷的输运被认为是单个分子的分立局域态之间的一种跳跃式输运过程。同时,聚合物半导体材料中存在着大量的结构缺陷,这些缺陷态形成丰富的缺陷能级,从而对少数载流子起到陷阱作用,导致少数载流子传导困难。聚合物半导体内部电荷传导机理十分复杂,还有待于进一步深入研究。
在消防安全需求升级与物联网技术融合的背景下,Holtek(盛群半导体)推出BA45F25343/53/63系列MCU,以双通道感烟AFE(模拟前端)为核心,结合高度集成的电源管理与智能算法,实现感烟探测器在精度、成本、可靠性三大维度的突破性提升。该系列通过内置双通道LED驱动、5V/9V多电压输出及失效报警功能,不仅解决了传统方案外围电路复杂、误报率高(行业平均>2%)的痛点,更以国产替代能力打破海外厂商(如ADI、Microchip)在高端消防芯片市场的垄断,成为智能消防终端、工业安全监测等场景的行业标杆。随着智慧城市与安规政策驱动,BA45F系列有望在百亿级消防物联网市场中占据核心地位。
在边缘计算与工业自动化高速发展的当下,电源管理技术正面临高密度集成与能耗优化的双重挑战。Microchip推出的MCPF1412高效全集成12A电源模块,以行业领先的5.8mm³超小封装、95%以上能效转换率及智能化数字接口,直击设备小型化与能源损耗的核心痛点。本文从技术解析、性能突围、国产替代路径及市场前景多维度切入,深度剖析该模块如何通过创新的LDA封装与PMBus®兼容设计,在工业控制、数据中心及新能源领域重构电源管理标准,为国产替代与全球竞争提供关键技术启示。
在第二十一届上海国际车展的智能驾驶技术专区,易灵思(展位2BC104)首次公开展示其钛金系列FPGA完整技术生态,两款基于16nm FinFET工艺的旗舰产品Ti60/Ti180,配合全栈式开发平台,构建起覆盖智能座舱、自动驾驶域控制器、车载传感三大核心场景的解决方案。
全球半导体制造格局迎来关键变量。根据产业链最新消息,英特尔的Intel 18A制程节点已获得英伟达、博通、IBM等多家行业巨头的代工订单,首批验证芯片反馈积极。这意味着在台积电主导的先进制程领域,美国本土终于出现具备竞争力的替代方案。
在2025年上海国际车展上,联发科技(MediaTek)以天玑汽车旗舰座舱平台C-X1与联接平台MT2739的发布,正式吹响了“AI定义座舱”的号角。作为全球首款基于3nm制程的车规级芯片,C-X1凭借双AI引擎架构、NVIDIA Blackwell GPU集成及400TOPS的端侧AI算力,不仅突破了传统车载芯片的算力天花板,更通过云端-端侧一致性开发生态,实现了低延迟语音交互、实时旅程规划等生成式AI功能的规模化落地。而MT2739作为5G-Advanced技术的标杆性产品,率先支持3GPP R18协议及卫星通信技术,解决了复杂场景下的网络稳定性难题。这两大平台的协同,标志着MediaTek在智能汽车领域完成了从芯片性能到生态整合的全链条布局,直面高通8155等竞品的市场优势,并加速国产替代进程。随着智能座舱渗透率预计在2025年突破60%,MediaTek正以技术革新重塑行业格局,推动中国汽车芯片从“跟随”迈向“引领”的跨越式发展。