发布时间:2010-12-29 阅读量:1333 来源: 发布人:
中心议题:
* 使半导体与冷却板紧密贴合
双面冷却构造的功率半导体需要在制造方法和维持冷却性能方面下工夫。
新型冷却系统采用的交叉层叠功率半导体和冷却板的构造,因此半导体和冷却板需要始终接触在一起。制造时首先重叠冷却板制成冷却器,然后重叠功率半导体,插入冷却器中(图8)。
图8:PCU的制造工序在层叠型冷却器中插入功率半导体元件。通过向冷却器两侧加压,使冷却板与半导体元件紧密贴合。最后,用板簧对冷却器加压,维持冷却性能。
为便于插入半导体,可增大冷却板与冷却板的间隔。但是,如果间隔过大,冷却板与半导体之间就会留有缝隙,冷却半导体的性能就会降低。因此,最初先扩大冷却板的间隔,插入半导体后,通过对冷却器两侧加压,使冷却板与半导体紧密贴合。
对冷却器加压时,为防止冷却器破损,采用了冷却板与冷却板之间产生形变的结构(图9)。通过使冷却器在冷却水不漏的前提下变形,实现了层叠结构。
图9:层叠型冷却器在生产时变形层叠型冷却器为使半导体元件与冷却板紧密结合,生产时进行加压。采用了加压时、为使冷却板与冷却板之间的距离缩短而变形的结构。
作为表示双面冷却性能的数据,有热传导率模拟数据和热阻试验数据。通过热传导模拟,比较了冷却构造中的最热部分(热阻最高的部分)。模拟结果表明,双面冷却构造比单面冷却构造的热阻可降低约48%。
通过热阻实验数据,比较了功率半导体每个位置的冷却性能(图10(a)。该实验将功率半导体耐热性上限150℃下的热阻目标值定为0.3K/W左右。实验数据控制在上限以下(图10(b)。另一组热阻试验的数据测量了改变冷却水流速时的热阻。将功率半导体每个位置(下降侧的1~12)的热阻做成了图表。数据显示热阻始终在0.3K/W以下,满足了散热条件(图10(c)。
图 10:采用双面冷却,冷却性能达到目标值以下(a)对PCU的功率半导体,在冷却水入口按顺序贴上序号1~12。在冷却水入口侧(上升)和出口侧(下降)比较了功率半导体的冷却性能。(b)热阻值的比较。冷却水入口侧和出口侧均控制在功率半导体目标值0.3K/W以下。(c)改变冷却水流量时的热阻控制在目标值以下。
功率半导体的耐热性是一大课题,不过将来该课题有可能得到彻底解决。比如,现在使用的是Si(硅)晶圆,而用SiC(碳化硅)材料做的话,耐热性将大幅提高,同时还能够通过更大的电流。
另外,现在设计的是水冷式PCU,今后随着气流改善等,或许还需要研究空冷式PCU。今后的10年将是决定PCU未来走向的关键时期。
随着汽车智能化、电动化浪潮加速,CAN收发器作为车载网络的核心通信接口,其可靠性与安全性成为产业链关注焦点。然而,国际局势的不确定性使得供应链自主可控需求迫在眉睫。川土微电子推出的CA-IF1044AX-Q1 CAN收发器,实现了从设计、晶圆制造到封测的全链条国产化,并通过欧洲权威机构IBEE/FTZ-Zwickau的EMC认证,成为兼具安全性与高性能的国产车规级解决方案。
在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。
在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。
随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。
作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。