影响选择触摸屏技术的各种因素

发布时间:2011-01-18 阅读量:1169 来源: 发布人:

中心议题:
    * 影响选择触摸屏技术的因素
    * 触摸技术的类型
    * 液晶触摸屏控制的可编程逻辑


如今,在各种手持消费电子设备、医疗应用设备、自动售货机/售票机/ ATM机、销售终端(POS),工业和过程控制设备中都可以看到触摸显示屏。触摸屏显示器正逐渐进入办公自动化,汽车和船舶仪表,家电和游戏机应用领域。

影响选择触摸屏技术的各种因素

可以用各种方式实现触摸屏。除了成本之外,技术方面的选择取决于以下几个因素:

性能:性能包括诸如速度、灵敏度、精确度、分辨率、拖动、Z轴、双/多触摸方式,视差角度和校准的稳定性。

输入灵活性:输入灵活性参数影响着人机交互的方式,诸如手套、手套材料、指甲、触笔,手写识别和获取签名。

环境:环境因素为温度、湿度、耐化学性、耐划伤、防飞溅/液滴、高度、车内安装、冲击、振动,断裂性和防打破的安全性。

电气和机械性能:电气和机械性能需要涵盖功率、浮动接地、静电放电(ESD)、电磁干扰(EMI),尺寸大小,曲率等

光学:影响技术选择的光学特性包括透光率、清晰度,色彩纯度和反射

触摸屏技术的类型


根据上面所述的各种因素,主要触摸屏技术可分为以下几种类型:

电阻式:从目前的推广应用来看,电阻式触摸屏是占主导地位的触摸技术。它由玻璃面板,铱锡氧化物(ITO)电阻涂层组成,并带有导电涂层的护板,沿着边缘有银色的总线条。两个层之间用绝缘小点隔开。触摸屏幕时,护板弯曲与玻璃上的涂膜相接触(图1)。
护板弯曲与玻璃上的涂膜相接触
图1:电阻式触摸技术

该控制器可选择驱动玻璃层和+5 V的护板,并读取源于护板和玻璃层产生的电压,根据被测量层中的压降来确定X和Y坐标。该技术需要四线 – 前面提到的总线条,这被称为4线电阻式触摸屏技术。

由于护板的不断弯曲,造成ITO涂膜中有微小的裂缝。会使4线电阻式触摸屏技术的线性度和精确度变差,环境变化也会造成精度的漂移。

已经用不断改进的5,6,7和8线电阻式触摸屏来消除这些影响。
 

声学脉冲识别(APR)式:APR由一个玻璃显示器涂层或其他坚硬的基板组成,背面安装了 4个压电传感器。该传感器安装在可见区域的两个对角上,通过一根弯曲的电缆连接到控制卡。用户触摸屏幕时,手指或者触笔和玻璃之间的拖动发生了碰撞或摩擦,于是就产生了声波。波辐射离开接触点传向传感器,按声波的比例产生电信号。在控制卡中放大这些信号,然后转换为数字数据流。比较数据与事先存储的声音列表来确定触摸的位置。APR设计成能够消除环境的影响和外部的声音,因为这些因素与存储的声音列表不匹配。

表面声波(SAW)式:SAW触摸屏是由一个针对X和Y轴的有发送和接收的压电传感器的玻璃涂层。该控制器发送电信号至发射传感器,并在玻璃的表面内将信号转换成超声波。通过反射器阵列,这些波覆盖整个触摸屏。对面的反射器收集和控制这些波至接收传感器,将他们转换成电信号。对每个轴重复这个过程。用户触摸时吸收了传播的波的一部分。 接收到的对应X和Y坐标的信号与存储的数字分布图相比较,从而识别变化并计算出坐标。

电容式:电容式触摸屏技术可以进一步细分为表面电容式和投射电容式。表面电容式技术是在玻璃面板上涂有相同的导体。围绕面板边缘的电极在整个导电层平均分配低电压,建立一个相同的电场。触摸时就会从各个角上得到电流。该控制器测量从各个角上获得的电流比,从而计算出触摸的位置。

投射电容式触摸屏:由两个玻璃保护层之间的传感器网格微细线组成。部件可以放置于用户安装的材料后面,包括防暴的厚达18毫米的玻璃。触摸时,手指和传感器之间构成了电容。从改变的传感器栅格的电气特性就可计算出触摸位置。

红外/光学式:高分辨率红外(IR)技术使用一个围绕显示器的小框,上面有表面安装的LED,对边有光感受器,红外透明边框隐藏在后面。该控制器连续发送LED,以此来构建一个红外光扫描网格。触摸时就会阻挡每个轴上的一束或多束红外光,这样就可确定相应的X,Y坐标。

上述主要的触摸屏技术的突出优点和典型应用总结在表1之中。
主要的触摸屏技术的突出优点和典型应用
表1:不同触摸技术的优点和应用

液晶触摸屏控制中的可编程逻辑

对于触摸技术的类型、显示器的类型和显示器制造商,液晶显示器的接口往往是不同的。对设备的设计人员而言,常常难以在其产品线上选择一个显示控制器芯片以适应所有不同的显示器。越来越多从事设计配有触摸屏液晶面板的人机界面(HMI)系统集成的设计人员转向使用可编程逻辑器件,以实现他们所需的灵活性。现场可编程门阵列(FPGA)技术使得系统架构师一次就能够确定人机界面控制器的架构,同时能够扩展到整个产品系列,可采用不同的微控制器、CPU,液晶面板以满足各种应用。 FPGA技术还可以很容易实现高性能的矢量图形,以及用单芯片与现实世界接口。

莱迪思的LCD - Pro是专门为基于FPGA的高级触摸屏视频图形控制器而设计的,为系统设计者提供单个人机界面结构,加速产品的上市,并大大节省了开发成本。与现有的 IP配合在一起,LCD – Pro简化了设计,设计人员能够更快的推出新产品,从而适应新兴市场的要求,而不需要重新设计平台。
相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"