语音芯片在智能仪表中的应用

发布时间:2011-07-15 阅读量:832 来源: 我爱方案网 作者:

中心议题:
    * 语音芯片在智能仪表中的应用


引言

随着智能化程度的不断提高,智能仪表的应用也越来越广泛。为了使仪表装置的功能更强、更完善,我们在仪表中加入了语音系统,增加了仪表的智能化。

语音系统的原理图如图1 所示,分录音和放音两部分。系统利用单片机进行数据采集,经处理转换成判断语音芯片放哪段音的判断信号。同时,单片机提供控制信号给语音芯片,使其正常工作。在语音芯片输出端接一个功放电路,使喇叭声音足够大。


图1 语音系统原理图
1 录音功能的实现

1.1 ISD25 系列语音芯片

ISD25 系列语音芯片[2]是华邦(Winbond)公司的专门产品,该芯片采用模拟数据直接在半导体存储器中存储的技术,不需经过A/D 或D/A 转换。因此能够非常真实、自然地再现语音、音乐、音调和效果声,避免了一般固体录音电路因量化和压缩造成的量化噪声和“金属声”。

ISD25 系列语音芯片具有如下特点:使用简单,单片存储,录放音方便;高音质,声音自然;有60/75/90/120s 多个时间档次可选;手动操作/微控制器控制兼容;放音时可用边沿触发或电平触发;可以循环放音;具有自动节电控制,节电时静态电流为1μA;信息存储无需后备电源;地址丰富,能进行多端信息处理;片内信息可保存100 年;存储单元可反复录音十万次;内置时钟源;放音可用单片机编程来控制;单电源工作;有PDIP、SOIC 和TSOP封装。

1.2 录音电路及其原理

录音电路见图2 所示, ISD25120 录音既可以手动操作,也可以单片机控制操作,在这里我们采用手动方式。地址发生电路用来控制A8~A2 的地址端输入。片选信号发生电路用来控制每一段的录音持续时间。/CE 变低后,允许进行录音操作。芯片在/CE 的下降沿锁存地址线的状态。录音时,由地址端提供起始地址,录音持续到/CE 变高。


图2 录音电路
1.3 语音信号的存储

ISD25120 可以进行多段信息处理,它分为600 段,每段的存储时间为0.2s。因此ISD25120 的每个地址对应的存储时间为0.2s,手动操作很难达到这样的精度。由于单片机的I/O 口有限,为了在放音时减少作为地址信号的I/O 口,我们把最低两位的地址置零(A1A0=00),把最高位的地址也置零(A9=0),这样手动控制的最小精度为0.2×4=0.8s。

在录音前,先分配每段音的初始地址,每段音的预留存储时间比实际存储的时间大约多2s,以防止溢出情况的发生。信息何时结束在录音时进行设定。只要/CE 端上升沿到来,录音就停止,此时ISD25120 芯片会在内部的一个独立的EEPROM 单元内设置一个信息结束标志EOM。当由/CE 端脉冲触发放音时,放音持续到EOM 位为止。ISD 芯片存储阵列的每一行都可以独立寻址,每一行中均匀地布置4 个EOM 定位点,由于每行的寻址时间为0.2s,故EOM 的分辨率为50ms。这样,从信息结束到EOM 信号输出的最大延时是50ms。EOM 上升沿实际上标志信息的结束,因此语音在EOM 处于低电平时仍继续从芯片输出,而在上升沿时则停止。

2 放音功能的实现

2.1 ST7 通用单片机

ST 公司单片机[3]采用了XFLASH 技术、EEPROM 电可擦除技术、低功耗技术、高可靠性技术、抗干扰技术等,因而使单片机在性能、结构、品质上都有明显的优势。它具有电压工作范围宽、丰富的片上外设、存储器结构与一般计算机相同、多种可编程低功耗方式和开发方便等优点。

我们选用 ST7LITE29 单片机,它有8KB 的程序存储器,384B 的RAM,256B 的带读出保护功能的数据EEPROM。

2.2 放音电路及其原理

放音电路如图3 所示。


图3 放音电路
单片机ST7LITE29 通过PB0、PB1、PB2 端口采集数据,并对采集的数据进行处理,产生判断语音芯片读取哪段录音的变量,单片机根据这些变量送相应的初始地址给ISD25120,然后用PB3 输出一个低脉冲给/CE,让语音芯片读取指定的录音,并把声音经输出端(SP+,SP-)送到功放电路放大,再通过喇叭发出经放大的声音信号。

2.3 功放电路

如果直接把喇叭接到ISD25120 的声音输出端(SP+,SP-),发出的声音太小,因此要在声音输出端接一个功放电路后再接到喇叭上,使其发出的声音足够大。

功放电路主要用 MC34119P[4]来实现。MC34119P 是MOTOROLA 公司的一种声频放大器,它能在低的工作电压下(最小为2V)增大声音输出端的电压摆幅,以达到放大声音的目的。MC34119P 的特点如下:① 工作电压范围大(2~16V);② 当用电池提供工作电压时,静态工作电流低(2.7mA);③ 有节电控制端;④ 节电时的静态电流很低(65μA);⑤驱动的负载电阻范围大(大于8Ω);⑥ 接32Ω喇叭的输出功耗为250mW;⑦ 总畸变失真值低(0.5%);⑧ 声音带宽的增益可从小于0dB 到大于46dB 调整;⑨ 仅需要少量的外部器件。

功放电路如图 4 所示。


我们取C1=5μF,C3=0.1μF,R1=3.3K,R2=50K,R3=50K。

电压放大倍数为


得到电压放大倍数的可调范围约为 30 到60。

Av = 54时得到的声音放大效果最好。

2.3 软件实现

流程图如图5 所示。该程序用Cosmic C 实现,并在SofTec Microsystems inDART for ST7 上编译通过。


3 结束语

在仪表中加入语音系统,使仪表装置的功能更强、效率更高、适用性更好。这种设计方法已经运用到棒球速度测试中,它可以读出击球速度并且告知怎样调整击球姿势,极大地方便了新手学习棒球。

相关资讯
力积电Q2财报透视:结构性亏损持续 3D封装与GaN技术驱动转型

2025年第二季度,力积电(6770.TW)实现合并营收新台币112.78亿元,环比微增1.5%,但营业利润亏损扩大至10.22亿元。关键财务指标显示,公司毛利率降至-9%,归属母公司净损达33.34亿元,每股亏损0.8元。管理层指出,美元汇率波动及衍生金融资产评价损失是利润恶化的主因,其中汇兑损失影响金额高达15.9亿元。

罗姆发布全球首款PFC+反激双模智控方案:单芯片实现24V电源系统小型化

上海,2025年7月22日 — 全球领先的半导体制造商ROHM(总部:日本京都市)今日发布全新参考设计“REF67004”,实现了通过单一微控制器协同控制广泛用于消费电子及工业设备电源的两种核心转换器——电流临界模式PFC(功率因数校正)和准谐振反激式转换器。该设计融合了ROHM的核心优势:基于Si MOSFET等功率器件与栅极驱动器IC的高性能模拟Power Stage电路,以及搭载超低功耗LogiCoA™微控制器的数字电源控制电路,从而推出创新的“LogiCoA™电源解决方案”,成功将模拟与数字控制技术优势集于一身。

4GHz国芯突围!海光C86重塑高端工作站市场格局

在全球供应链重构与数字安全双重挑战下,中国信息技术产业加速核心硬件自主创新。2025年7月,搭载新一代海光C86处理器的移动工作站集群完成商用落地,标志着国产终端正式从政策驱动型“安全替代”,向市场化驱动的“全场景高性能替代”演进。随着联想、紫光、中兴等十余家厂商同步推出整机产品,国产终端迎来千万级市场规模化的关键拐点。

2025年Q2中国智能手机市场分析:华为蝉联榜首,市场整体承压

2025年第二季度,中国智能手机市场延续了此前的低迷态势。Counterpoint Research最新报告显示,该季度中国智能手机出货量同比下滑2.4%,主要受季节性需求疲软、补贴政策边际效益减弱,以及国补政策带来的前置拉货效应影响。尽管618大促等促销活动在一定程度上稳定了销量,但整体市场仍缺乏强劲增长动力。

卓越服务再获认可!贸泽电子2024年斩获超25项制造商顶级奖项

在全球电子元器件分销领域享有盛誉的贸泽电子(Mouser Electronics),以其卓越的新品引入(NPI)能力和广泛的半导体与电子元器件库存而闻名。近日,公司郑重宣布,凭借在2024财年杰出的业绩表现和全方位的优质服务,贸泽电子荣膺其众多核心制造合作伙伴颁发的超过25项重量级企业奖项,其中包含多项极具分量的“年度代理商(Distributor of the Year, DOY)”荣誉。这一系列的殊荣充分体现了制造商伙伴对贸泽电子在全球范围内运营能力、市场拓展贡献及客户支持水平的高度认可。