语音芯片在智能仪表中的应用

发布时间:2011-07-15 阅读量:792 来源: 我爱方案网 作者:

中心议题:
    * 语音芯片在智能仪表中的应用


引言

随着智能化程度的不断提高,智能仪表的应用也越来越广泛。为了使仪表装置的功能更强、更完善,我们在仪表中加入了语音系统,增加了仪表的智能化。

语音系统的原理图如图1 所示,分录音和放音两部分。系统利用单片机进行数据采集,经处理转换成判断语音芯片放哪段音的判断信号。同时,单片机提供控制信号给语音芯片,使其正常工作。在语音芯片输出端接一个功放电路,使喇叭声音足够大。


图1 语音系统原理图
1 录音功能的实现

1.1 ISD25 系列语音芯片

ISD25 系列语音芯片[2]是华邦(Winbond)公司的专门产品,该芯片采用模拟数据直接在半导体存储器中存储的技术,不需经过A/D 或D/A 转换。因此能够非常真实、自然地再现语音、音乐、音调和效果声,避免了一般固体录音电路因量化和压缩造成的量化噪声和“金属声”。

ISD25 系列语音芯片具有如下特点:使用简单,单片存储,录放音方便;高音质,声音自然;有60/75/90/120s 多个时间档次可选;手动操作/微控制器控制兼容;放音时可用边沿触发或电平触发;可以循环放音;具有自动节电控制,节电时静态电流为1μA;信息存储无需后备电源;地址丰富,能进行多端信息处理;片内信息可保存100 年;存储单元可反复录音十万次;内置时钟源;放音可用单片机编程来控制;单电源工作;有PDIP、SOIC 和TSOP封装。

1.2 录音电路及其原理

录音电路见图2 所示, ISD25120 录音既可以手动操作,也可以单片机控制操作,在这里我们采用手动方式。地址发生电路用来控制A8~A2 的地址端输入。片选信号发生电路用来控制每一段的录音持续时间。/CE 变低后,允许进行录音操作。芯片在/CE 的下降沿锁存地址线的状态。录音时,由地址端提供起始地址,录音持续到/CE 变高。


图2 录音电路
1.3 语音信号的存储

ISD25120 可以进行多段信息处理,它分为600 段,每段的存储时间为0.2s。因此ISD25120 的每个地址对应的存储时间为0.2s,手动操作很难达到这样的精度。由于单片机的I/O 口有限,为了在放音时减少作为地址信号的I/O 口,我们把最低两位的地址置零(A1A0=00),把最高位的地址也置零(A9=0),这样手动控制的最小精度为0.2×4=0.8s。

在录音前,先分配每段音的初始地址,每段音的预留存储时间比实际存储的时间大约多2s,以防止溢出情况的发生。信息何时结束在录音时进行设定。只要/CE 端上升沿到来,录音就停止,此时ISD25120 芯片会在内部的一个独立的EEPROM 单元内设置一个信息结束标志EOM。当由/CE 端脉冲触发放音时,放音持续到EOM 位为止。ISD 芯片存储阵列的每一行都可以独立寻址,每一行中均匀地布置4 个EOM 定位点,由于每行的寻址时间为0.2s,故EOM 的分辨率为50ms。这样,从信息结束到EOM 信号输出的最大延时是50ms。EOM 上升沿实际上标志信息的结束,因此语音在EOM 处于低电平时仍继续从芯片输出,而在上升沿时则停止。

2 放音功能的实现

2.1 ST7 通用单片机

ST 公司单片机[3]采用了XFLASH 技术、EEPROM 电可擦除技术、低功耗技术、高可靠性技术、抗干扰技术等,因而使单片机在性能、结构、品质上都有明显的优势。它具有电压工作范围宽、丰富的片上外设、存储器结构与一般计算机相同、多种可编程低功耗方式和开发方便等优点。

我们选用 ST7LITE29 单片机,它有8KB 的程序存储器,384B 的RAM,256B 的带读出保护功能的数据EEPROM。

2.2 放音电路及其原理

放音电路如图3 所示。


图3 放音电路
单片机ST7LITE29 通过PB0、PB1、PB2 端口采集数据,并对采集的数据进行处理,产生判断语音芯片读取哪段录音的变量,单片机根据这些变量送相应的初始地址给ISD25120,然后用PB3 输出一个低脉冲给/CE,让语音芯片读取指定的录音,并把声音经输出端(SP+,SP-)送到功放电路放大,再通过喇叭发出经放大的声音信号。

2.3 功放电路

如果直接把喇叭接到ISD25120 的声音输出端(SP+,SP-),发出的声音太小,因此要在声音输出端接一个功放电路后再接到喇叭上,使其发出的声音足够大。

功放电路主要用 MC34119P[4]来实现。MC34119P 是MOTOROLA 公司的一种声频放大器,它能在低的工作电压下(最小为2V)增大声音输出端的电压摆幅,以达到放大声音的目的。MC34119P 的特点如下:① 工作电压范围大(2~16V);② 当用电池提供工作电压时,静态工作电流低(2.7mA);③ 有节电控制端;④ 节电时的静态电流很低(65μA);⑤驱动的负载电阻范围大(大于8Ω);⑥ 接32Ω喇叭的输出功耗为250mW;⑦ 总畸变失真值低(0.5%);⑧ 声音带宽的增益可从小于0dB 到大于46dB 调整;⑨ 仅需要少量的外部器件。

功放电路如图 4 所示。


我们取C1=5μF,C3=0.1μF,R1=3.3K,R2=50K,R3=50K。

电压放大倍数为


得到电压放大倍数的可调范围约为 30 到60。

Av = 54时得到的声音放大效果最好。

2.3 软件实现

流程图如图5 所示。该程序用Cosmic C 实现,并在SofTec Microsystems inDART for ST7 上编译通过。


3 结束语

在仪表中加入语音系统,使仪表装置的功能更强、效率更高、适用性更好。这种设计方法已经运用到棒球速度测试中,它可以读出击球速度并且告知怎样调整击球姿势,极大地方便了新手学习棒球。

相关资讯
英伟达携Arm架构AI芯片进军PC市场,游戏本市场或迎技术革命

据The Verge等多家权威媒体报道,英伟达(NVIDIA)正联合联发科开发基于Arm架构的AI PC处理器,预计2025年底至2026年初正式推出。该芯片将整合Arm CPU核心与新一代Blackwell GPU架构,首款搭载设备已确认由戴尔旗下高端电竞品牌Alienware首发,目标直指高性能游戏本市场。

纳芯微NSD2622N:专为高压GaN而生的高集成驱动芯片,破解系统设计难题

纳芯微电子最新推出的NSD2622N是一款针对增强型氮化镓(E-mode GaN)功率器件优化的高压半桥驱动芯片。该芯片通过创新性地集成正负压稳压电路(可调5V-6.5V正压与固定-2.5V负压)与高可靠性电容隔离技术,完美解决了GaN器件在高压大功率场景下易受串扰误导通、驱动电路设计复杂等核心痛点。其支持自举供电、超强200V/ns dv/dt抗扰能力以及2A/-4A峰值驱动电流,显著简化了系统设计,提升了电源效率和可靠性,为人工智能数据中心电源、光伏微型逆变器、车载充电机等高增长领域提供了极具竞争力的驱动解决方案。

光伏组件旁路保护的技术革新:华润微TMBS 180mil G2深度解析

在“双碳”目标驱动下,光伏组件功率持续提升(2025年主流组件功率突破700W),对旁路二极管的性能要求显著提高。华润微电子功率器件事业群(PDBG)基于肖特基二极管领域的技术积累,推出第二代180mil TMBS(Trench MOS Barrier Schottky)器件。该产品通过优化正向压降(VF)、反向漏电流(IR) 及高温工作特性,解决了高功率组件在热斑效应、高温环境下的可靠性痛点,目前已向天合、晶澳、晶科等头部光伏企业批量供货。

移动AI大洗牌:三星联手Perplexity剑指谷歌霸主地位

全球智能手机巨头三星电子正积极推动其人工智能服务多元化战略。权威消息显示,该公司已进入与美国AI搜索新锐Perplexity深度合作的最终谈判阶段,计划在明年初发布的Galaxy S26系列中整合其尖端技术。此举标志着消费电子行业头部玩家正加速构建独立于传统搜索引擎巨头的AI生态体系。

2025年Q1全球DRAM市场深度解析:技术迭代引发厂商格局重构

据TrendForce集邦咨询统计,2025年第一季度全球DRAM产业营收达270.1亿美元,较上季度缩减5.5%。此轮下滑主要受两大因素驱动:一是标准型DRAM合约价持续走低,二是高带宽内存(HBM)出货规模阶段性收缩。市场进入技术转换关键期,三大原厂制程升级导致产能结构性调整,为二线厂商创造了新的市场机遇。