CAN和光纤实现电动汽车动力电池组采集系统

发布时间:2012-03-30 阅读量:1264 来源: 我爱方案网 作者:

中心议题:
    *  基于CAN 总线的系统硬件设计
    *  系统软件设计
    *  基于USB-CAN的数据采集


电池是电动汽车的能量来源,电动车发展的主要技术瓶颈就是电池技术的发展。对电池性能的研究就离不开大量的实验数据,动态采集电动车电池组的参数是研究电池性能的重要途径。

根据锂离子电池车载系统的特殊环境及对电池参数的测试要求, 本系统采用CAN和光纤通信技术,使用电池管理专用IC,使系统的实时性、可靠性和抗干扰能力大大增强, 而且系统易于扩展,灵活性好,能够准确采集电池的各个参数,准确地采集数据并预测电池的运行状态,从而提高了电池组的使用寿命。

1 基于CAN 总线的系统硬件设计


CAN 总线是目前世界上最流行的汽车控制与测试间的一种串行数据通信协议,具有实时性强、抗干扰能力强、结构简单、应用方便、价格低廉等特点[4],通信速率可达1 Mbps,使得CAN 总线在电动汽车应用上成为发展趋势。

图1 为一般电动车CAN 总线网络框图。CAN 总线接口电路的核心是使用8 位高性能的片内含CAN 控制器的P87C591 作为CAN 通信控制器,以完成CAN 的通信协议,而CAN 总线收发器的主要功能是增大通信距离,提高系统的瞬间抗干扰能力,保护总线,降低射频干扰(RFI)等。



本系统中共有16 组,每组有10 节电池串联,每1 个电池组配置1 个测量单元。每个单元采用一种设计非常简化的电池测量方法,由一个IC 集成了大部分电池参数的采集任务,结构简单,精度高,可靠性高。本设计采用电池管理芯片LTC6802,它通过一个1 MHz 串行接口进行通信,并包括温度传感器输入、12 位ADC 和一个精准的电压基准。每个LTC6802 能测量12 只单独电池,实现了0.12%(在室温条件下)和0.22%(在-40 ℃至+85 ℃的温度范围内)的准确度,能够承受60 V 的共模电压,完全适合在电池组高共模电压的要求。LTC6802 采用串行外部设备接口(SPI) 进行命令和数据通信, 本论文使用P87C591 的IO 模拟SPI 工作方式与LTC6802 进行数据通信,此方法可以更充分地使用硬件资源(见图2 所示)。



 


每个测量单元的控制器均采用内部集成了CAN控制器SJA1000和A/D模数转换模块的单片机P87C591芯片,其主要功能是提供电池组的电压和温度信息,并将采集的信号通过CAN总线发送给电池管理ECU,其中CAN通讯接口电路如图3所示。



电池组的ECU 与电池管理ECU 组成一个CAN 总线网络,网络拓扑结构为总线形,传输介质为双绞线,传输协议为CAN2.0B。电池管理ECU 为双CAN 控制器结构,一个CAN控制器与电池组ECU 组成电池管理系统内部的CAN 网络,另一个CAN 控制器与汽车中其他控制系统组成整车光纤CAN 总线网络,能实现多机通信,并达到上位机控制和电池组状态信息的采集。

2 系统软件设计

本系统采用8051 系列的C 语言进行软件编程,按照模块化设计思想进行编写,包括主程序、CAN 初始化程序、CAN发送数据程序、CAN 接收数据程序、A /D 转换及定时中断程序等。CAN初始化程序用来实现CAN 工作时的参数设置,主要包括工作方式的设置、时钟输出寄存器的设置、接受屏蔽寄存器和接收代码寄存器的设置、总线定时器的设置、输出控制寄存器的设置、中断允许寄存器的设置和总线波特率的设置。系统主程序流程设计如图4 所示,主要包括初始化和主循环部分。


 


3 基于USB-CAN的数据采集

LabVIEW主要用于仪器控制、数据采集、数据分析等领域,是一个功能强大、方便灵活的虚拟仪器开发环境,它提供了大量的连接机制,通过DLLs、共享库、ActiveX等途径实现与外部程序代码或软件系统的连接。

本系统的上位机设计采用USB-CAN模块与电池管理系统BMU进行数据通信,通过USB-CAN模块对CAN总线上的数据进行实时采集。Virtual CAN Interface(VCI)函数库是专门为ZLGCAN设备在PC上使用而提供的应用程序接口。库里的函数从ControlCAN.dll中导出,在LabVIEW中可以通过调用动态链接库的方法直接使用这些库函数实现对电池组数据的实时显示、存储与分析,更好的记录电池组动态的各个参数。上位机主要功能是对电压、电流、温度数据实时曲线显示,数据记录与历史数据显示,并且对电池组参数进行统计分析,包括动态运行过程中单节电池最高电压、最低电压、最大输出电流、最大反向制动电流、瞬时功率、累计消耗能量等参数。VCI 函数的使用流程如图5 所示。实践证明此方法高效可靠,能够很好地满足数据采集的要求。



图6 与图7 是电池组实时采集的单节电池电压与总电流实时曲线,可以看出电池在工作过程中电压会有一定差别,这也是由于电池特性不一致所引起的。从图7 中可以看出,电池组在运行过程中最大放电电流可达到300 A,电流负值表示电动车在反向制动时的充电电流,最大可达-200 A。由于电池总是工作在充电放电过程中,所以对于电池动态数据的采集与分析是必不可少的一个环节。通过数据的采集、存储与分析,可以准确地判断电池的实际状态,为建立电池数据库提供数据资源。




此外,本系统还有一个自动生成运行报告的功能,通过实际路况的数据采集对数据进行统计分析。运行报告内容包括:电池组动态一致性、最高电压、最低电压、平均电压、输出最大电流、最大制动电流、输出能量、反向制动能量、最高温度、最低温度等。

4 结论

本文还对系统进行上位机的软件设计与开发,能够采集并存储大量的测试数据,为建立完善的电池组数据库提供了可靠的数据资源,对电池技术的发展与完善作出可靠的实验数据。本系统还可以通过打开保存的数据文件,经分析计算电池组一致性、电池组容量、电池组内阻等重要参数,统计分析电池状态,打印电池运行报告。

相关资讯
存储器市场回暖驱动威刚科技2025年第一季业绩显著增长

2025年第一季度,全球存储器市场迎来关键转折点。DRAM与NAND Flash现货价自2月止跌回升,带动行业库存去化加速,需求端逐步回温。威刚科技董事长陈立白指出,存储器原厂自2024年末起减产调控供给,叠加AI服务器、智能终端等新兴应用需求增长,推动市场价格走出低谷。根据TrendForce数据,尽管此前预测Q1合约价可能下跌,但实际现货市场受备货动能及库存策略影响,价格反弹超预期,成为威刚业绩增长的直接推力。

全大核架构革新旗舰体验 天玑9400e芯片深度解析

MediaTek于5月14日正式推出天玑9400e旗舰移动平台。作为天玑系列的全新力作,该芯片凭借全大核架构设计、第三代4nm制程工艺及多项创新技术,在计算性能、能效管理和AI应用领域实现突破性进展,为智能手机用户提供更卓越的游戏、影像与通信体验。

韩国半导体出口突破116亿美元:存储芯片涨价与HBM需求推高增长

根据韩国产业通商资源部5月14日发布的《2025年4月ICT进出口趋势》报告,韩国4月信息通信技术(ICT)出口额达189.2亿美元,同比增长10.8%,创下有记录以来4月份的最高值。同期贸易顺差为76.1亿美元,主要得益于半导体等高附加值产品的强劲表现。然而,对华、对美两大核心市场的出口增速显著放缓,反映出全球贸易政策不确定性的深远影响。

半导体周期波动下逆势突围:Silicon Labs Q1财报的技术密码

2025年第一季度,Silicon Labs实现营收1.78亿美元,环比增长9.8%,同比增幅达32%,毛利率稳定维持在55%的高位。尽管运营亏损3200万美元,净亏损收窄至3047万美元(摊薄后每股亏损0.94美元),但其现金流管理与研发投入展现长期战略定力。在当前半导体行业周期性调整背景下,公司通过差异化产品布局,在物联网(IoT)、边缘AI及低功耗连接领域持续扩大市场份额。

TDK突破性创新:全球首款8A微型磁珠改写电源EMC设计规则

根据TDK株式会社(TSE:6762)2025年5月官方公告,其最新量产的MPZ1608-PH系列大电流积层贴片磁珠在微型化封装、电流承载能力和高温可靠性等方面实现重大突破。该产品将推动汽车电子和工业设备电源系统的设计革新。