大幅优化离线电源轻载能效的安森美半导体创新PFC控制方案

发布时间:2012-05-7 阅读量:1887 来源: 我爱方案网 作者:

中心议题:
    *探究大幅优化离线电源轻载能效的安森美半导体创新PFC控制方案
解决方案:
    *NCP1611采用电流控制频率反走CrM模式及跳周期模式
    *采用CCFF控制架构,最大限度提升能效

相关阅读:

模拟PFC走到极限,未来属于新出现的数字PFC
http://www.52solution.com/article/articleinfo/id/80007291

如何采用PFC+非稳压隔离变换器组合获得高效率开关电源
http://www.52solution.com/article/articleinfo/id/80011193

基于PFC的离线式开关电源设计
http://www.52solution.com/article/articleinfo/id/80011125

提升屏幕影像画质 LED调光技术关键至极
http://www.52solution.com/article/articleinfo/id/80011360

单芯片解决方案实现系统电路的优化【2012LED照明开发者论坛精彩笔录】
http://www.52solution.com/article/articleinfo/id/80011302


如今,电源设计人员面临着诸多挑战,既要达到更高的能效目标,又要满足加快产品上市的要求。就实现更高能效目标而言,电源设计不仅要顾及满载能效,而且需要评估10%、20%、50%及75%负载等条件下的能效。电源设计人员还要面对其它不少挑战如新电源可能更易于滋生可听噪声、须增强可靠性及安全性及加快上市进程并缩短安全认证时间等。

应对高能效挑战的安森美半导体创新PFC方案

安森美半导体身为全球领先的高性能、高能效硅方案供应商,持续开发创新技术及产品,为市场提供丰富的电源半导体方案,其中就包括强大的PFC产品阵容及后续产品(图1),使电源设计人员能够不断地开发高能效的电源方案。其中,安森美半导体最新推出的NCP1611 PFC控制器采用创新的电流控制频率反走(Current Controlled Frequency Foldback,CCFF)方法驱动PFC升压级,功率因数接近1,高驱动能力为-500 mA / +800 mA,Vcc范围从9.5 V到35 V,具有非闭锁和过压保护、电压检测、软起动和过流限制等功能。


图1:安森美半导体的PFC产品阵容。

NCP1611有源功率因数校正(PFC)控制器适用于AC-DC适配器、平板电视及照明镇流器及其它中功率离线应用的升压预转换器。该控制器采用正待批专利的CCFF架构。在这种模式下,当电感电流超过可编程值时,电路运行在CrM模式下。当电流低于这个预设水平,电流为零(null)时,NCP1611可线性降低频率至大约20 kHz。CCFF可最大限度提高额定负载和轻负载效率。特别是,可将待机损耗减少到最低限度。该控制器具有一系列强大的保护功能,可妥善处理各种电源工作和故障条件。NCP1611拓展了传统CrM PFC控制器的优势。图2是NCP1611典型应用电路图。


图2:NCP1611典型应用电路图。

作为增强型PFC控制器,NCP1611采用电流控制频率反走CrM模式及跳周期模式,可优化整个负载范围内的效率,实现更好的轻负载效率,以及非常强大的安全特性。

NCP1611独特的关键特性包括:动态响应增强器用于提供快速的线路/负载瞬态响应;宽Vcc范围最高达35 V,带门电压钳位功能;启动电流典型值为20 µA,最高50 µA(A版本Vcc启动电压10.5 V;B版本为17 V);线路范围检测功能调节及优化环路增益;A版本提供软启动功能,B版本能使用较小Vcc电容,易于启动;谷底导通功能利于提供最佳能效及产生极低电磁干扰(EMI)。

 

 

 


在安全性方面,NCP1611具有Vcc欠压锁定(UVLO)及线路输入欠压(BO)保护;在电感饱和或旁路二极管短路条件下提供过流保护(OCP);输出过压保护(软OVP及快速OVP)及欠压保护(UVP);反馈开路关闭及接地开路故障监控;以及过热关闭。图3所示是NCP1611的稳压工作情况。


图3:NCP1611的稳压工作。

此外,NCP1611还具有其它特性,如快速负载瞬态特性、最大Vcc为35 V的内部14 V门电压钳位、顺利启动运行软启动(A版)、强大的开路和引脚短路保护、热关断等。NCP1611还可以实现稳压工作,轻易解决开路及短路引脚故障,提升安全性;即使是在接地引脚开路的条件下该元件也可受到保护。

由于具备了上述优异的特性,NCP1611的市场及应用主要涵盖大型平板电视、电脑电源、高功率适配器、LED照明和镇流器,以及功率大于300 W的PFC应用。

CCFF架构详解及与CrM架构比较

如图3所示,安森美半导体开发的CCFF架构的定时器仅控制死区时间,利用定时器对应电流电平调节死区时间,反走频率限制为>20 kHz,具有市场上领先的性能。

图4:电流控制频率反走(CCFF)架构。

具体讲,CCFF架构具有固定导通时间控制和频率反走特性。在大电流时,电路以临界导电模式工作。小电流时(重负载时接近线路过零点,轻载时位于全部正弦方波),因此,磁芯复位后下一个周期并不会立即启动;相反,定时器开始调节死区时间;电流越小,定时器持续时间(死区时间)越长;定时器持续时间取决于大小;定时器仅控制死区时间(不控制开关周期/关闭时间)。由于死区时间不受电流周期时长变化的影响,因此可以毫不犹豫地进行谷底导通。


图5:演示板能效比较(红色:带跳周期模式的CCFF;绿色:关闭跳周期功能的CCFF;紫色:CrM)

 

 

 


采用CCFF控制架构,最大的好处莫过于提升能效。采用传统CrM(临界导电模式)/BCM(边界线导电模式),在负载降低时,开关频率上升;负载极低时,控制器可能进入“跳周期模式”,滋生可听噪声。而采用CCFF控制架构,可以在负载降低时降低开关频率,减小功率损耗;在轻载时,控制器可以钳位高于可听噪声频段的较低频率;负载极低时,则采用跳周期模式工作(可以轻易关闭)。因此,这种谷底导通可进一步提升能效,减小电磁干扰。图4比较了基于NCP1611CCFF PFC及传统CrM PFC在不同负载条件下的能效。由图中可见,在10%轻载条件下,基于带跳周期模式的NCP1611的演示板的能效高达近97%(关闭跳周期模式下也达近96%),而基于传统CrM架构的演示板能效仅为近87%,相关近10%。可见NCP1611在提升电源轻载能效方面表现尤为优异。

小结:


NCP1611 PFC控制器采用新颖及正待批专利的控制技术——电流控制频率反走,以临界导电模式/不连续导电模式(DCM)工作,并带有谷底开关,可在宽工作电源范围下提供极佳能效,在宽负载范围下可提供高功率因数及良好的总谐波失真(THD)性能。这种新颖的PFC控制器与传统CrM PFC控制器相比,具有更高的故障处理能力、更佳的瞬态响应,可灵活支持不同偏置情形。值得一提的是,NCP1611 PFC控制器专门进行了优化,尤其适合平板电视、电源适配器、高能效计算机电源及LED驱动器电源等应用。
相关资讯
存储技术革命!HBM4携30%溢价重塑AI芯片格局

全球半导体产业正迎来新一轮技术迭代浪潮。市场研究机构TrendForce最新报告显示,随着人工智能算力需求呈现指数级增长,三大DRAM原厂加快推进HBM4产品研发进程。作为第四代高带宽存储技术的集大成者,HBM4在架构创新与性能突破方面展现出显著优势,预计将重构高性能计算芯片的产业格局。

Cadence推出HBM4内存IP解决方案,突破AI算力内存瓶颈

2025年5月22日,电子设计自动化领域巨头Cadence正式发布HBM4内存IP解决方案,其数据传输速率达到业界领先的12.8Gbps,较前代HBM3E产品带宽翻倍。该方案基于JEDEC最新发布的JESD270-4规范,针对AI训练与高性能计算(HPC)系统的内存带宽需求进行了全面优化。

行业领先!320g超高量程+边缘AI,ST MEMS传感器重新定义运动与冲击检测

2025年5月,全球半导体巨头意法半导体(STMicroelectronics,NYSE: STM)发布了业界首款集成双加速度计与AI处理功能的微型惯性测量单元(IMU)——LSM6DSV320X。该传感器在3mm×2.5mm的超小封装内融合了运动跟踪(±16g)和高强度冲击检测(±320g)能力,并通过嵌入式机器学习核心(MLC)实现了边缘智能。意法半导体APMS产品部副总裁Simone Ferri表示:“这一创新架构将为智能设备提供前所未有的交互灵活性和数据精度,推动消费电子、工业安全及医疗健康等领域的技术革新。”

TWS市场强势反弹:2025年Q1出货量激增18%,苹果小米领跑

全球TWS耳机市场在2025年第一季度展现出强劲复苏态势。根据Canalys最新数据,该季度全球出货量达7,800万台,同比增长18%,创下自2021年以来的最高增速。这一反弹标志着市场在经历阶段性调整后,正式迈入以技术迭代与消费升级为核心驱动力的新周期。

突破200万次按压极限:Littelfuse TLSM轻触开关引领工业控制新标准

2025年5月,全球工业技术制造巨头Littelfuse(NASDAQ:LFUS)正式发布TLSM系列表面贴装轻触开关,凭借200万次超长寿命、SPDT(单刀双掷)配置及IP54防护等级,重新定义了高频使用场景下的开关可靠性标准。在当前消费电子微型化、工业设备智能化的趋势下,传统轻触开关普遍面临寿命短(10-100万次)、环境适应性差(高温/高湿下性能衰减)、触感与耐用性难以平衡等痛点。TLSM系列通过材料革新与结构优化,不仅解决了行业长期存在的技术瓶颈,更瞄准了工业4.0、智能汽车、医疗设备等新兴市场的增量需求。