离网型光伏发电系统设计方案

发布时间:2012-05-29 阅读量:4234 来源: 我爱方案网 作者:

中心议题:
    *  发电系统的基本原理
    *  系统主要组成部件介绍
解决方案:
    *  各部件选型设计方案
    *  系统监控方案介绍


一、系统基本原理


离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统一般由太阳电池组件组成的光伏方阵、太阳能充放电控制器、蓄电池组、离网型逆变器、直流负载和交流负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能充放电控制器给负载供电,同时给蓄电池组充电;在无光照时,通过太阳能充放电控制器由蓄电池组给直流负载供电,同时蓄电池还要直接给独立逆变器供电,通过独立逆变器逆变成交流电,给交流负载供电。



图1 离网型光伏发电系统示意图

(1)太阳电池组件

太阳电池组件是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能;

(2)太阳能充放电控制器

也称“光伏控制器”,其作用是对太阳能电池组件所发的电能进行调节和控制,最大限度地对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,光伏控制器应具备温度补偿的功能。

(3)蓄电池组


其主要任务是贮能,以便在夜间或阴雨天保证负载用电。

(4)离网型逆变器

离网发电系统的核心部件,负责把直流电转换为交流电,供交流负荷使用。为了提高光伏发电系统的整体性能,保证电站的长期稳定运行,逆变器的性能指标非常重要。

二、主要组成部件介绍

2.1太阳电池组件介绍



图2 硅太阳电池组件结构图
 

太阳电池组件是将太阳光能直接转变为直流电能的阳光发电装置。根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电阵列提供更大的电功率。太阳电池组件具有高面积比功率,长寿命和高可靠性的特点,在20年使用期限内,输出功率下降一般不超过20%。



图3太阳电池伏安特性

一般来说,太阳电池的发电量随着日照强度的增加而按比例增加。随着组件表面的温度升高而略有下降。太阳电池组件的峰值功率Wp是指在日照强度为1000W/M2,AM为1.5,组件表面温度为25℃时的Imax*Umax的值(如上图所示)。

随着温度的变化,电池组件的电流、电压、功率也将发生变化,组件串联设计时必须考虑电压负温度系数。

2.2光伏控制器介绍

光伏控制器主要是对太阳电池组件发出的直流电能进行调节和控制,并具有对蓄电池进行充电、放电智能管理功能,在温差较大的地方,光伏控制器应具备温度补偿的功能。

根据系统的直流电压等级和太阳电池组件的功率配置合适的光伏控制器。

常见的光伏控制器有DC12V、24V、48V、110V、220V不同电压等级。

2.3蓄电池介绍

蓄电池主要是用于储能,以便在夜间或阴雨天给负载提供电能。


 

根据系统直流电压等级的要求来配置蓄电池的串、并联数量;

尽量配置1-2组蓄电池,可选用大容量的蓄电池,常见的有12V和2V系列的蓄电池;

蓄电池串并联时应遵循下列原则:同型号规格、同厂家、同批次、同时安装和使用。

2.4逆变器介绍

逆变器是将直流电能变换为交流电的一种电能转换装置。

离网型逆变器是光伏发电系统中的重要部件之一,逆变器选型是根据负载的特性(如阻性、感性或容性)及负载功率大小进行选择的。

三、方案介绍


3.1客户基本要求

现有客户需设计一套离网光伏发电系统,当地的日平均峰值日照时数按照4小时考虑,现场负载为12盏荧光灯,每盏为100W,总功率为1200W,每天使用10小时,蓄电池按照连续阴雨天2天计算,请计算出该系统的配置。

选用某公司180W光伏组件,其技术参数如下表:



 

3.2太阳电池组件设计

太阳电池组件容量计算,参考公式:P0=(P×t×Q)/(η1×T),式中:

P0——太阳电池组件的峰值功率,单位Wp;

P——负载的功率,单位W;

t——负载每天的用电小时数,单位H;

η1——为系统的效率(一般为0.85左右);

T——当地的日平均峰值日照时数,单位H;

Q——连续阴雨期富余系数(一般为1.2~2)。

根据公式计算:

P0=P×t×Q/(η1×T)=(1200×10×1.2)/(0.85×4)≈4.235(kW)

太阳电池组件数量:4235/180≈24(块)

太阳电池组件串联数量:2块

太阳电池组串数量:12串

因此,本项目选用24块180Wp太阳电池组件,总功率为4.32kW,按照2块组件串联设计,共12个太阳电池串列。

(备注:本系统选用DC48V光伏控制器,太阳电池串列分为4路接入光伏控制器。)

3.3光伏控制器选型

系统选用DC48V光伏控制器额定电流计算,参考公式:I=P0/V,式中:

I——光伏控制器的控制电流,单位A;

P0——太阳电池组件的峰值功率,单位Wp;

V——蓄电池组的额定电压,单位V;

根据公式计算:I=4320/48=90(A),故可选用1台SD48100光伏控制器。

备注:

根据系统的电压和控制电流确定光伏控制器的规格型号。

在高海拔地区,光伏控制器需要放大一定的裕量,降容使用。



图9 SD48100光伏控制器技术参数
 

3.4蓄电池组设计

蓄电池组的容量计算,参考公式:C=P×t×T/(V×K×η2),式中:

C——蓄电池组的容量,单位Ah;

P——负载的功率,单位W;

t——负载每天的用电小时数,单位H;

V——蓄电池组的额定电压,单位V;

K——蓄电池的放电系数,考虑蓄电池效率、放电深度、环境温度、影响因素而定,一般取值为0.4~0.7。该值的大小也应该根据系统成本和用户的具体情况综合考虑;

η2——逆变器的效率;

T——连续阴雨天数(一般为2~3天)。

根据公式计算:

C=P×t×T/(V×K×η2)

=1200×10×2/(48×0.5×0.9)

≈1200(Ah)

得出,系统需配置的蓄电池组容量为1200Ah,同时要满足直流电压48V的要求,可采用24只2V/1200Ah的蓄电池进行串联。

3.5逆变器选型

逆变器额定容量计算,参考公式:Pn=(P*Q)/Cosθ,式中:

Pn——逆变器的容量,单位VA;

P——负载的功率,单位W,感性负载需考虑5倍到8倍左右的裕量;

Cosθ——逆变器的功率因数(一般为0.8);

Q——逆变器所需的裕量系数(一般选1.2~5)。

因荧光灯启动冲击电流较大,所以本系统的Q系数取3,根据公式计算:

Pn=(P*Q)/Cosθ=1200*3/0.8=4.5(KVA)

故可选择SN485KSD1离网型逆变器。

备注:

不同的负载(阻性、感性、容性),启动冲击电流不一样,选择的裕量系数也不同。

在高海拔地区,逆变器需要放大一定的裕量,降容使用。


图10 SN485KSD1逆变器技术参数
 

3.6系统监控方案介绍


目前离网光伏发电系统的通讯和监控方案可采用以下几种方式:

(1)RS485/232本地通讯



(2)以太网远程通讯



(3)GPRS远程通讯


系统的通讯和监控装置需配置离专用监控软件、工业PC机、显示器、通讯转换设备以及通讯电缆。多机版监控软件可实现多台设备同时监控,监控软件界面如下:


相关资讯
厚度缩减15%!全球最薄UFS 4.1问世,折叠屏设备存储革命来临

半导体存储技术领域迎来重大突破。2025年5月22日,韩国半导体龙头企业SK海力士正式发布全球首款搭载321层1Tb TLC 4D NAND闪存的UFS 4.1移动存储解决方案。该创新产品的核心突破在于通过业界最高层数堆叠技术,实现了存储密度与能效比的双重跃升,标志着移动端存储器正式迈入超薄化与AI适配的新纪元。

近红外感度提升21%!思特威全新SC4336H重构安防监控性能边界

2025年5月22日,技术领先的CMOS图像传感器供应商思特威(SmartSens,股票代码:688213)正式发布新一代4MP智能安防图像传感器SC4336H。作为首款基于DSI™-3工艺技术打造的产品,SC4336H通过创新性技术架构与工艺优化,在高感光性能、近红外灵敏度、噪声抑制及功耗控制等方面实现突破,标志着智能安防图像传感器迈入高性能与低功耗深度融合的新阶段。

96核Zen 5巅峰对决:AMD Threadripper 9000如何碾压Intel至强?

2025年5月21日,AMD在台北国际电脑展(Computex 2025)正式发布基于Zen 5架构的Ryzen Threadripper 9000系列处理器,标志着高性能计算(HPC)领域迈入新纪元。该系列分为面向工作站的专业级PRO系列(如9995WX)和高端桌面(HEDT)的非PRO系列(如9980X),最高配备96核192线程、128条PCIe 5.0通道及8通道DDR5-6400内存支持,计划于7月上市。这一发布不仅延续了AMD在多核性能上的统治地位,更通过技术革新进一步巩固其在AI、科学计算等领域的竞争优势。

从32%到14%!西门子并购Excellicon破解芯片流片困局

在全球半导体设计复杂度持续攀升的背景下,时序收敛已成为芯片流片成功的关键挑战。西门子数字工业软件公司于2025年5月宣布与美国EDA初创企业Excellicon达成收购协议,旨在通过整合后者在时序约束开发、验证及管理领域的领先技术,强化其集成电路设计工具链的完整性与竞争力。此次并购标志着西门子EDA向全流程解决方案的进一步延伸,其产品组合将覆盖从约束文件编写到物理实现的完整闭环。

英飞凌、纳微半导体入局,英伟达HVDC联盟剑指下一代AI数据中心标准

随着生成式AI模型的参数量突破万亿级别,数据中心单机架功率需求正以每年30%的速度激增。传统54V直流配电系统已逼近200kW的物理极限,而英伟达GB200 NVL72等AI服务器机架的功率密度更是突破120kW,预计2030年智算中心机架功率将达MW级。为此,英伟达在2025年台北国际电脑展期间联合英飞凌、纳微半导体(Navitas)、台达等20余家产业链头部企业,正式成立800V高压直流(HVDC)供电联盟,旨在通过系统性技术革新突破数据中心能效瓶颈。