丰田计划在无线供电技术中用方形线圈

发布时间:2013-01-3 阅读量:678 来源: 我爱方案网 作者: 清水直茂

【导读】汽车无线供电技术的线圈形状主要有圆形和方形两种。线圈的形状决定磁路,因此供电侧与受电侧形状不统一的话,两个线圈之间就不能高效通过磁通量。圆形和方形线圈之间相互不兼容且各具优缺点。目前全球的汽车厂商也基本分为两派。 丰田正在探讨在该公司开发的无线供电技术中使用方形线圈,方形线圈存在的课题是如何将电磁波的泄漏降至日本电波法要求的水平。
 
汽车无线供电技术的线圈形状主要有圆形和方形两种。线圈的形状决定磁路,因此供电侧与受电侧形状不统一的话,两个线圈之间就不能高效通过磁通量。圆形和方形线圈之间相互不兼容且各具优缺点。目前全球的汽车厂商也基本分为两派。 
 
丰田正在探讨在该公司开发的无线供电技术中使用方形线圈,方形线圈采用在方形平板上缠绕铜线制造而成。丰田已经试制了配备方形线圈的车辆,并正在评测性能。方形线圈存在的课题是如何将电磁波的泄漏降至日本电波法要求的水平。就试制车而言,丰田已经获得了达到日本电波法要求的眉目。 
 
方形线圈是在方形的平坦铁氧体内芯上缠绕铜线制成线圈。磁通量从平板内芯的侧面输出,然后从另一平板内芯的侧面进入。其优点是对水平错位的容许量较大。但电磁波的泄漏往往较为严重。由于磁通量是从下方的平板内芯的侧面向水平方向输出,然后再从上方的平板内芯的侧面进入,因此磁路容易在水平面上扩散。丰田通过改进覆盖线圈的外装等,抑制了磁路的扩散。 
 
圆形线圈则是在面包圈状的铁氧体内芯上设置旋涡状铜线线圈。与方形线圈相比电磁波不易向水平方向泄漏。从供电侧线圈的内侧输出的磁通量穿过受电侧线圈的内侧。由于磁通量是从上向下通过,因此在供电侧的下方和受电侧的上方设置平坦导体的话,便可轻松封闭磁路。另外,水平错位的容许量也比方形线圈要小。
相关资讯
存储技术革命!HBM4携30%溢价重塑AI芯片格局

全球半导体产业正迎来新一轮技术迭代浪潮。市场研究机构TrendForce最新报告显示,随着人工智能算力需求呈现指数级增长,三大DRAM原厂加快推进HBM4产品研发进程。作为第四代高带宽存储技术的集大成者,HBM4在架构创新与性能突破方面展现出显著优势,预计将重构高性能计算芯片的产业格局。

Cadence推出HBM4内存IP解决方案,突破AI算力内存瓶颈

2025年5月22日,电子设计自动化领域巨头Cadence正式发布HBM4内存IP解决方案,其数据传输速率达到业界领先的12.8Gbps,较前代HBM3E产品带宽翻倍。该方案基于JEDEC最新发布的JESD270-4规范,针对AI训练与高性能计算(HPC)系统的内存带宽需求进行了全面优化。

行业领先!320g超高量程+边缘AI,ST MEMS传感器重新定义运动与冲击检测

2025年5月,全球半导体巨头意法半导体(STMicroelectronics,NYSE: STM)发布了业界首款集成双加速度计与AI处理功能的微型惯性测量单元(IMU)——LSM6DSV320X。该传感器在3mm×2.5mm的超小封装内融合了运动跟踪(±16g)和高强度冲击检测(±320g)能力,并通过嵌入式机器学习核心(MLC)实现了边缘智能。意法半导体APMS产品部副总裁Simone Ferri表示:“这一创新架构将为智能设备提供前所未有的交互灵活性和数据精度,推动消费电子、工业安全及医疗健康等领域的技术革新。”

TWS市场强势反弹:2025年Q1出货量激增18%,苹果小米领跑

全球TWS耳机市场在2025年第一季度展现出强劲复苏态势。根据Canalys最新数据,该季度全球出货量达7,800万台,同比增长18%,创下自2021年以来的最高增速。这一反弹标志着市场在经历阶段性调整后,正式迈入以技术迭代与消费升级为核心驱动力的新周期。

突破200万次按压极限:Littelfuse TLSM轻触开关引领工业控制新标准

2025年5月,全球工业技术制造巨头Littelfuse(NASDAQ:LFUS)正式发布TLSM系列表面贴装轻触开关,凭借200万次超长寿命、SPDT(单刀双掷)配置及IP54防护等级,重新定义了高频使用场景下的开关可靠性标准。在当前消费电子微型化、工业设备智能化的趋势下,传统轻触开关普遍面临寿命短(10-100万次)、环境适应性差(高温/高湿下性能衰减)、触感与耐用性难以平衡等痛点。TLSM系列通过材料革新与结构优化,不仅解决了行业长期存在的技术瓶颈,更瞄准了工业4.0、智能汽车、医疗设备等新兴市场的增量需求。