一种多功能电子密码锁的VHDL设计

发布时间:2014-02-4 阅读量:1125 来源: 发布人:

【导读】今天介绍一款利用EDA技术,在可编程逻辑器件CPLD上实现了一种多功能电子密码锁的设计方案。为弥补传统密码锁的不足,进一步提高可靠性,该系统中所有数据的存储、运算都完全由硬件实现。利用VHDL语言对电路进行行为描述,EDA工具进行仿真及下载。

传统机械锁的防盗功能差,在现代高科技安防系统中无法起到作用,已逐步被更可靠、更智能的电子数字密码锁代替。目前市场上的大部分密码锁产品是以单片机为核心的,利用软件进行控制,实际应用中系统稳定性较差且成本高。本文研究的是电子密码锁的一种纯硬件实现方案,为弥补传统技术的不足,采用EDA技术在可编程芯片上实现密码的存储、运算等操作,使产品既具有硬件的安全性和高速性,又具有软件开发的灵活性和易维护性。

1

特点:

(1)利用VHDL语言对电路进行行为描述,QuartusⅡ软件中的EDA工具进行仿真及下载;

(2)整个设计过程采用自顶向下方案,设计效率高,开发成本低;

(3)采用了MAXⅡ系列的CPLD作为硬件核心,其功耗低,逻辑执行速度远高于单片机,在安防行业中有较强的市场竞争力。

设计功能要求:

设计的电子密码锁可以完成以下功能:

(1)设置密码锁的密码位数n;
  
(2)n 位密码的输入及显示;
  
(3)密码的核对;
  
(4)报警功能;
  
(5)密码的清除和修改。
  
主要由密码输入电路、核心控制电路和显示输出电路构成。其中,输入电路包括矩阵式键盘、键盘扫描电路、消抖电路、译码电路等;控制电路主要完成密码的输入、核对、清除和修改等功能;输出电路控制数码显示屏上密码值的显示。

硬件电路设计

1 输入电路
  
本设计采用的是4×3 矩阵式键盘,如图1所示,它是由4 根I/O线作为行线,3根I/O线作为列线,在行列线的每一个交叉点上都设置一个按键,一共有12个按键,分别代表数字0~9、确认键和设置键,如图1所示。

2
图1 4x3矩阵键盘示意图

很显然,扫描信号的变化顺序为:0111,1011,1101,1110,周而复始。在扫描的过程中,当某键被按下时,从KEYC2~KEYC0 中读出的相应列信号为“0”,再将此时的4位行信号和3位列信号值送至键盘译码电路进行译码,即可得出准确的按键值。相反,若从KEYC2~KEYC0 读出的值全为“1”,则表示没有键被按下,即不做任何操作。如表1所示。

3

在键盘扫描过程中,扫描信号在不断变化,以判断按键的按下和抬起。快速变化的扫描信号不仅使增加了系统功耗,而且还会对其他敏感电路造成干扰[6-7].因此必须进行以下改进:将扫描模式改为键按下触发扫描方式,即当某键被按下后,才触发键盘扫描电路产生扫描时序,键被放开后,停止对键盘的扫描,使电路处于相对静止状态,以减少干扰信号。
  
另外,在按键按下时刻与开始扫描时刻之间加入一段较小的延时,延时结束后才允许电路开始扫描工作,可以最大限度地避免因键盘抖动带来的错误输入。
  
主要VHDL代码描述如下:

4
 
 

2 控制电路
  
控制电路是整个系统的核心电路,能根据用户输入的密码位数进行子电路的选择。由于系统允许用户输入4 位、6 位或8 位密码,因此子电路有三个,由三选一选择器决定其中哪个电路为用户服务,见图2。
 
5

图2中,en是三选一选择器的工作使能端,它由输入电路的有效重置信号启动。当用户按下矩阵键盘上的重置按键长达3 s后,输入电路将产生en信号为‘1’从而使选择器Mux31 开始工作。如用户要设置为6 位密码,则在提示音后按下键盘上的"6”按键,其按键信号会传递给X6,由选择器决定后续控制电路为kong6。
  
主要VHDL代码描述如下:
6

对于后续控制电路kong4~kong8,都应具有密码清除、存储、核对及修改等功能。由于仅仅是操作数位数不同而已,这三个电路的VHDL语言描述过程对设计人员来说,几乎是重复操作,因此大大缩短了设计周期。
  
控制电路中密码的存储是利用寄存器来实现的。
  
寄存器是一个典型的时序逻辑电路,在某一特定时钟信号的控制下可以装载一组二进制数据并稳定存储,撤销该控制信号后信息仍然存放在寄存器中。充分利用VHDL中不完整的if语句能产生时序电路的特点,进行电路描述,而不涉及到内部触发器,开发效率高。
  
3 输出电路
  
输出电路要准确地将结果以十进制形式直观地显示在输出LED 上,并且当用户每输入一位密码,所有LED上的密码值左移一位。该电路属于纯组合逻辑电路,可以利用VHDL语言中的case语句描述出其电路功能。
  
部分VHDL代码如下:

7

其中:movesgl 表示左移位移量;zin 是输入信号;当movesgl为“000”时表示不需要左移;当为“001”时,表示需要移动一次;“010”表示需要移动两次,以此类推。当用户通过矩阵键盘输入6 位密码时,就需要向左移动6 次,从而达到密码在LED数码管上动态左移的现象。
  
仿真与下载

1 仿真
  
在编程下载之前,必须利用EDA 工具对设计结果进行模拟测试,即仿真。仿真是EDA 设计过程中的重要步骤。本文采用的时序仿真是最接近真实器件运行特征的仿真,仿真精度较高。以4位密码电路为例,做出了系统仿真图,如图3所示。

8

从图3中可以看出,通过输入端zin,先后输入了密码值“5623”,s0,s1,s2,s3存储的值在实时更新,分析波形,总结该系统基本达到了预期的功能需求,输出波形正常。

2 下载
  
在QuartusⅡ9.0软件中,利用集成EDA工具完成的下载步骤如下:
  
(1)根据开发板中可编程CPLD芯片EPM240T100C5的引脚特性,将本系统的顶层设计实体的端口进行引脚分配。
  
(2)适配器完成适配后生成了POF 格式的下载文件,再通过JTAG编程电缆向CPLD芯片进行编程。
  
(3)单击下载按钮Start,即对目标器件进行下载操作。当Process进度显示100%时,表示下载成功。
  
(4)利用开发板上的外围接口电路,进行了硬件的测试。并利用嵌入式逻辑分析仪SignalTap Ⅱ观察密码输入、修改等运行情况。

结语
  
本文弥补了传统密码锁技术上的不足,研究出了一种利用VHDL语言,结合EDA技术,在可编程芯片CPLD 上构造逻辑电路。由于所有密码的存储及运算都通过纯硬件实现,其逻辑执行速度远高于单片机。充分利用了CPLD的逻辑可编程性,开发周期短、效率高,设计出来的产品具有较高的可靠性,且功耗低、体积小、易维护,势必会在安防市场中取胜。
 
相关资讯
TP-Link芯片业务战略收缩:WiFi 7研发受阻与全球合规挑战

2025年6月12日,TP-Link外销主体联洲国际(TP-Link Systems)位于上海张江的WiFi芯片部门启动重大裁员,从通知到离职手续仅用半天完成,涉及算法、验证、设计等核心岗位员工,仅保留少数成员。公司提供N+3的高额补偿方案,远高于中国法定的N+1标准,被视为当前裁员潮中的“清流”。行业分析指出,此次调整主要针对WiFi前端模块(FEM) 研发线,而非全面退出芯片领域。FEM作为连接芯片与天线的关键组件,其研发投入缩减与WiFi 7芯片量产进度延迟及成本控制压力直接相关。

DDR4内存现十年罕见价格倒挂,产业链急备货应对停产危机

2025年6月全球存储市场遭遇剧烈波动,DDR4内存现货价格单日暴涨近8%,创下近十年最大单日涨幅。据DRAMeXchange数据显示,截至6月13日,DDR4 8Gb(1G×8)3200颗粒均价飙升至3.775美元,单周涨幅达38.27%,本季度累计涨幅更突破132%。反常的是,DDR4价格竟反超新一代DDR5,形成罕见“价格倒挂”现象,业界直呼“十年未遇”。

三星面临2nm工艺成本压力,供应链策略或转向中国供应商

全球半导体代工产业正面临先进制程的经济性挑战。三星电子在推进Exynos 2600处理器的2nm GAA工艺量产时,遭遇显著成本压力。据行业信息显示,其原型芯片试产阶段的晶圆制造成本同比增加约40%,当前良率区间为30%-40%,远低于70%的盈亏平衡点。若无法在今年底实现良率突破,Galaxy S26系列的处理器单颗成本将比现行5nm芯片高出约三倍。

OLED显示器面板市场逆势增长,电竞需求与韩系厂商主导2025年新高点

2025年全球OLED显示器面板市场迎来爆发性增长。据TrendForce集邦咨询最新数据,尽管宏观经济承压,但该品类出货量预期从280万片大幅上调至340万片,年增长率由40%升至69%,连续第二年实现三位数级增长(2024年增幅达132%)。这一逆势增长的核心驱动力源于两大因素:电竞市场的强劲需求与韩系面板厂商的战略重心转移。

赋能5G车联!艾为电子发布超低插损双通道车规射频开关解决方案

在汽车智能化、网联化发展势不可挡的时代背景下,稳定、高速的车载通信系统成为刚需。作为国内领先的IC设计企业,艾为电子洞悉市场趋势,依托深厚的射频技术积淀,正式面向全球市场推出两款高性能车规级射频开关产品:AW13612PFDR-Q1 与 AW12022TQNR-Q1。这两款产品严格遵循车规AEC-Q100标准认证,专为应对汽车电子严苛的振动、冲击、宽温度范围(-40℃至105℃)工作环境而设计,工作频率覆盖0.1GHz至5.925GHz,完美适配4G LTE、5G NR、C-V2X等主流车载通信频段。其核心使命是为车载通信模块(如5G T-Box)、智能座舱系统等提供高可靠、低损耗的信号路由解决方案,保障车辆与外界信息的高速、稳定传输。