52科普:移动电源你必须搞清楚的几个概念

发布时间:2014-06-5 阅读量:783 来源: 我爱方案网 作者:

【导读】52科普系列自推出以来,受到网友集体点赞。小编受到鼓励决定奋发图强,将52科普进行到底。本期科普为大家带来移动电源的几个基本概念,无论你是移动电源研发者还是移动电源使用者,看完本文皆有收获!

one:锂电池分类

俗话说的好:人有三六九等,肉有五花三层。无论什么东西,总能找个理由分出个好坏。同样,要评价移动电源好坏,首要因素就是它使用的锂电池种类的差别。

为什么说这个很重要?因为锂电池本身就是一个综合的、大的概念,锂电池、锂离子电池、锂离子聚合物电池,多几个字这里面都大有文章,成本相差也是天差地别。

锂电池、锂离子电池锂离子聚合物电池

1、锂电池。一般情况下是锂离子电池的简称,但严格来说与锂离子电池有很大的区别。锂电池是锂原电池,以锂金属或锂合金为负极材料,内含纯态的锂金属,使用非水电解质溶液的一次性电池。


常见的锂电池

锂电池是一次性电池,那锂离子电池是不是指可重复充放电的锂电池呢?也非。广义的可充放锂电池是指由一个石墨负极,一个采用钴、锰或磷酸铁的正极,以及一种用于运送锂离子的电解液所构成。但也有一次性锂离子电池,它们使用锂金属或者嵌锂材料作为负极。

2、锂离子电池相对于锂电池,多出的“离子”二字,就是强调了运送“锂离子”的电解液。我们熟悉的18650电池,内含被吸附的液体电解液,因而所有的18650电池都属于锂离子电池。而18650电池之所以从锂离子电池中被单独提出来,是[url=]索尼[/url]基于工业化标准生产的需要,做出的直径为18mm、长度为65.0mm的锂离子可充放电池,使用范围更广、更常见。所以,除了18650的标准,还有16340电池。


锂离子电池

3、锂离子聚合物电池多出的“聚合物"三字,就是强调这是电解液为胶状、固态或半固态的锂离子电池。锂离子聚合物电池之所以高大上,“固态聚合物”代替了传统的液态电解质是根本原因。


锂离子聚合物电池

使用胶态或固态聚合物取代液态有机溶剂电解液的好处,一是聚合物可以做成任意形状适配不同的设备,适应能力高,设备的工业设计自由度就有保证。比如手机(18650这类形状固定、使用液态电解液的电池明显就无法做在今天的智能手机上)。二是聚合物状态的电解液安全性更高:液体电解液在短路、处于高温高压的极端条件下是会爆炸的,聚合物则只会膨胀、鼓出来,再极端的状态也不会发生爆炸燃烧的情况。

另外,现在的锂离子聚合物电池,都是可充放电池,并非像锂离子电池那样,还有一次性、不可重复使用的品种。

三类电池总结

以是否能重复充放电为标准,锂离子聚合物电池全部属于可重复充放电,锂离子电池大部分可以、少部分不行,锂电池则完全不行。

以成本、生产难度衡量,锂离子聚合物电池 > 锂离子电池 > 锂电池。

以安全性衡量,锂离子聚合物 > 锂离子电池/锂电池。

以形态是否固定衡量,锂离子聚合物可“自定义”程度最高,锂离子电池/锂电池次之。

当然,这里还要强调一点,我们现在讨论的锂电池、锂离子电池、锂离子聚合物电池,是以内部电解质为分类标准,主要影响生产成本、电池安全性、电池结构/外形。
 

至于电池性能,正极电芯的影响更大,比如采用钴酸锂、锰酸锂、磷酸铁锂等基于钴锂、锰锂、镍锂的不同正极材料,各方面的性能是不一样的。

two:关于电池正极电芯

要想彻底了解影响锂离子电池性能的要素,必须先知道锂离子电池的放电/充电的原理和一般结构组成。

一般来说,化学电池都是靠正极、负极活性物质在氧化还原反应(正极化合物失电子、负极化合物得电子)过程中,把化学能转化为电能。锂离子电池相对普通化学电池有什么特殊么?没有。锂离子电池之所以强调“锂离子”三字,是因为其正负极活性物质是含锂化合物。

既然本质上都是氧化还原反应,锂离子电池具体又是如何产生电流的呢——靠的是正极/负极层状物质晶体中,锂离子不断的嵌入/脱嵌,具体如图:

锂离子电池充放电原理图

锂离子电池充放电原理

我们都知道,锂离子电池是由正极、负极、电解质三个基本部分组成。正极和负极作为存储锂离子的载体——层状物质晶体,充电时,锂离子从正极脱嵌经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到碳负极,保证负极的电荷平衡。放电时则相反,锂离子从负极脱嵌,经过电解质嵌入正极,正极处于富锂态。

目前,负极材料是确定的,一般采用的是碳素材料——石墨(锂离子嵌入碳化合物);所以,与负极材料对应的正极材料这个“锂离子容器”,其储藏的锂离子越多、密度越大,锂离子电池储存的电量就越大;其晶体结构的化学性质越是稳定,锂离子电池的安全性就越高;其老化特性(即随着使用时间增长发生的材料变形,晶体结构破坏,内阻逐渐升高)越不明显,锂离子电池的循环次数越多。一句话总结,不同的正极材料,很大程度上决定了锂离子电池的容量、安全性、寿命。

钴酸锂层状晶体正极示意图

基本我们可以这么说,决定锂离子电池性能的关键,是正极材料,而不同正极材料比拼的,是含锂化合物晶体结构的稳定性、嵌入锂离子数量、老化特性。

锂离子电池正极材料数据对比

目前锂离子电池使用的正极材料,有包括层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂(同样也有层状结构的锰酸锂LiMnO2),橄榄石结构的磷酸铁锂,和三元材料(简单点可以看做钴锂、镍锂、锰锂某种程度的“混合”),它们各有优缺点。不过由于各个公司的研发和生产水平不同,对于不同的正极材料,各种流行的说法大家争论不休,这里只列举一家公司公开的数据来做对比:


参数说明:

电压越高,充放电功率也越大,在电池容量一定的情况下,意味着更快的充放电(不考虑控制芯片作用的情况下)。另外,正极材料电压不同,也要求配合不同的电解质,这样才能充分发挥锂离子电池的性能。

振实密度,也称压实密度,是指面密度/极片碾压后的厚度(集流体厚度) ,单位:g/cm3。一般来说,压实密度越大,电池的容量就能做的越高,所以压实密度也被看做材料能量密度的参考指标之一。不过压实密度讲求的是合适,过大或过小,都不利于锂离子的嵌入嵌出。而合适的正极压实密度,可以增大电池的放电容量,减小内阻,减小极化损失,延长电池的循环寿命。

循环寿命很好理解,就是衡量正极材料老化特性。

总结

很明显,不考虑还未实用的磷酸铁锂,目前综合性能最优的材料还是三元材料。至于钴酸锂,性价比最高,所以目前也是使用最广的。

扩展阅读:

【科普文】移动电源的正确使用方法
大神来袭!移动电源方案最强技术解析
移动电源产业发展趋势与机遇
相关资讯
汇聚产业全景,引领智造未来:AIoT全产业链精英深度碰撞

2025年6月20日,IOTE 2025·上海站在上海新国际博览中心N5馆圆满收官! 在万物智联的时代洪流中,物联网技术正以前所未见的速度重塑世界,驱动千行百业向智能化、数字化加速跃迁。本届展会以“生态智能,物联全球”为核心主题,携手全球移动通信标杆盛会MWC上海,不仅呈现了一场前沿技术的饕餮盛宴,更是物联网与移动通信深度融合、共绘发展新图景的生动实践,为全球AIoT产业的蓬勃脉动注入强劲活力与动能。

高抗扰驱动器选型指南:SGM58000 集成方案挑战 ST/安森美驱动器性能极限

在工业自动化、新能源汽车、高效电源等应用领域日益追求高功率密度与高可靠性的今天,高性能的栅极驱动器扮演着至关重要的角色。它们作为功率开关器件(如IGBT、SiC MOSFET、GaN HEMT)与控制信号之间的关键"桥梁",其性能直接决定了系统效率、开关速度、电磁兼容性(EMC)以及整体可靠性。本文将聚焦行业备受关注的意法半导体新一代集成化方案(STDRIVE102H/BH)、圣邦微电子的三相驱动器(SGM58000)以及安森美的双通道高端驱动(NCD57252),进行深度对比分析,揭示各自优势及适用场景,为工程师选型决策提供专业参考。

突破0.5mg漂移极限!村田发布工业级三轴MEMS加速度计

工业数字化转型加速推动预测性维护需求增长,尤其桥梁、大型建筑等基础设施的结构健康监测(SHM)领域。传统高精度加速度传感器长期面临偏移漂移大、环境适应性弱等痛点。村田制作所最新推出的SCA3400系列数字三轴MEMS加速度传感器,以≤0.5mg的偏移寿命漂移值突破行业极限,为工业设备状态监测树立新标杆。

先进制程角逐2026:3nm/2nm将占旗舰手机芯片三成市场

全球智能手机芯片领域正迎来新一轮工艺迭代浪潮。知名研究机构Counterpoint Research最新报告指出,3nm及更先进的2nm制程技术将在2026年占据智能手机应用处理器(SoC)出货总量的近三分之一(约33%),成为驱动高端设备性能跃升的核心引擎。这一演变标志着半导体制造技术对移动终端能力的决定性影响达到新高度。

罗姆第4代SiC MOSFET赋能丰田bZ5电动车 中日合资模块实现量产突破

2025年6月24日,全球半导体巨头罗姆(ROHM)宣布其第四代碳化硅(SiC)MOSFET裸芯片已成功集成至丰田汽车面向中国市场推出的纯电动SUV车型"bZ5"的牵引逆变器系统。该技术突破由罗姆与中国正海集团合资设立的上海海姆希科半导体有限公司(HAIMOSIC)实现规模化量产,标志着中日产业链协作在高端功率模块领域取得实质性进展。