安森美最新矩阵式全LED汽车前照灯解决方案

发布时间:2014-07-9 阅读量:1234 来源: 发布人:

【导读】本文介绍分析LED的应用优势,特别是如今越来越受到重视的帮助提升汽车主动安全性能方面的优势,概览典型汽车照明应用的 LED驱动器方案,重点介绍配合最新全LED汽车前照灯要求的安森美半导体NCV78663高集成度LED驱动器方案,特别是它在最新矩阵式智能动态 LED前照灯系统中的应用。

近年来,凭借光效增高、能耗低、可靠性高、寿命长、尺寸小及环保等众多优势,LED在汽车内部及外部照明中的应用日渐增多,已经从最初不那么紧要的汽车照明应用,如座舱内照明、停车灯及仪表板背光,跨越到了前照灯及组合尾灯等更宽广应用。特别是由于尺寸小,LED能够配合丰富的形状和线条变化,有助提升车灯辨识度,被指定用于众多中高档车的前照灯系统,配合漂亮的外观造型设计。图1所示的是如今典型的汽车LED照明应用。

 典型汽车LED照明应用
图1:典型汽车LED照明应用。

汽车LED照明——不仅是漂亮,更助提升汽车主动安全性

LED照明给汽车带来的直观好处,并不限于漂亮造型。根据美国全国公路交通安全管理局(NHTSA)和欧洲委员会(EC)统计,虽然只有25%的驾驶是在夜间和光线不足期间,但却有40%的死亡和重伤事故发生在这段时间。故改善汽车照明,特别是夜间和光线不足条件下的照明,有助提升汽车主动安全性。实际上,为了保护驾驶员/车上人员/路边行人的安全,业界长期致力于开发各种汽车照明方案,如用于改善夜间转弯时照明的自适应前照灯(AFS)方案,及用于改善日间行车安全的日间行车灯(DRL)方案。

与传统上在汽车照明中广泛应用的白炽灯和高强度气体放电灯(HID)相比,LED用于汽车照明有着无可比拟的优点。如LED响应时间短,用于刹车灯可以增加后车的刹车距离,用于转向灯则有更好警示效果。LED的亮度高,但又不像HID那样刺眼,有助降低对向行驶汽车驾驶员眩目的风险。LED灯能耗比白炽灯或HID低很多,有助降低燃油消耗,节省支出。
 

典型汽车照明应用LED驱动器方案

不同汽车照明应用对LED电流的要求各不相同,故需结合具体应用要求,选择适合的LED驱动器方案。典型LED驱动方案包括电阻、线性恒流稳流器、线性稳压器及开关稳压器等。

其中,电阻是最简单、最低成本的LED限流方案,但能效也最低,且存在LED筛选成本及热失控等问题。恒流稳流器(CCR)性能高于电阻方案,但成本低于线性或开关稳压器方案,适合低电流LED照明应用。线性稳压器支持多条线路并行配置以帮助散热,提供达±2%的稳流精度,无电磁干扰(EMI)问题,成本中等,但能效也较低。开关稳压器广泛使用。这种方案成本更高,技术更复杂,但支持任何类型的输入电压与输出电压关系,且根据输入/输出条件,能效能够高于90%,但存在EMI问题。

 
图2:典型汽车照明应用及LED驱动器方案

除了这些方案,安森美半导体还推出高集成LED照明管理集成电路(LMIC)。这些LMIC集成了多种LED驱动及控制功能,相当于完整子系统,能够承受高达125℃的环境温度,用于汽车前照灯、组合尾灯及最新的AFS等应用。
 

全LED前照灯应用要求及高集成度驱动方案


2008年,奥迪R8全球第一次采用全LED前照灯。这全LED前照灯中包含近光灯、远光灯、转向灯及日间行车灯等模块,其中各含不同数量LED。根据研究及咨询服务公司SNE Research的数据,2013年全球汽车市场LED前照灯的渗透率不足5%,但预计到2020年这一比例将超过50%,可见增长前景十分可观。

但全LED前照灯对驱动方案提出更高要求,要求高能效集成驱动器,支持从单个LED到多串LED等不同配置(电压可高达60 V),还要求脉宽调制(PWM)调光,如用于示廓灯。全LED前照灯还要求LED串低EMC辐射,且对散热、诊断及通信接口等多方面提出了要求。

 安森美半导体单芯片智能前照灯LED驱动器NCV78663应用电路图
图3:安森美半导体单芯片智能前照灯LED驱动器NCV78663应用电路图。

安森美半导体配合全LED前照灯驱动需求,推出了NCV78663单芯片高能效智能电源镇流器及双LED驱动器系统级芯片(SoC),用于先进的LED前照灯系统。NCV78663采用降压-升压拓扑结构,能够提供高于90%的总能效,是一款高集成度方案,使设计人员能够以单颗SoC控制远光灯及近光灯、日间行车灯、转向指示灯及雾灯。NCV78663极适合于驱动大电流LED(电流可达2 A),支持PWM调光以维持LED色温及平均电流受控。NCV78663通过两个内置独立降压开关通道,以极少数量的外部元件,提供驱动电压达60 V的两串LED的完整驱动方案。每个通道可以根据应用要求来通过SPI接口和/或OTP设置来定制输出电流和电压。这器件在片上提供汽车前照灯诊断功能,还集成了升压控制器,为设计人员提供外部元件数量有限的独特输入电流滤波器。NCV78663既能独立使用,也可以与微控制器结合使用,灵活性极高。这方案源自电池的EMC较低,辐射至LED串的EMC也较低。

安森美半导体的NCV78663全LED前照灯驱动器已经获得奔驰E系列的采用,每辆车在其先进前照灯系统中使用多达6颗NCV78663,还使用多达3颗的安森美半导体NCV70522步进电机驱动器。
 

安森美半导体最新矩阵式动态智能全LED前照灯方案

近年来,市场上出现了矩阵式动态智能全LED前照灯,如奔驰新一代S级汽车中配备的智能型LED前照灯。此前照灯系统内包含56颗LED,每个LED能够分别点亮、熄灭或是调整亮度。此灯的独特功能如下:

•    防对向车辆炫目:LED根据前雷达和立体摄像机的数据进行点亮、熄灭或者是调整亮度动作,实现自动调整照射范围,保证自己视线的同时,避免造成对方车辆炫目。
•    绕开前方车辆轮廓:遇到前方同方向行驶车辆时,可绕开前车轮廓,同时完全照亮前车左侧和右侧区域。因此夜间行车时可一直开启远光灯,大幅提升行车安全性。
•    遇行人快速闪烁:智能头灯可以识别出前方行人,用大灯自动快速闪烁,以提醒行人避开危险,降低夜间意外的可能。

 
图4:动态智能全LED前照灯之独特功能示意。

这样的矩阵式动态智能全LED前照灯可以采用串联或并联驱动结构。采用并联结构时,各颗LED在电气特性方面的差异对照明系统的性能有显著影响,造成能耗增加及散热问题。串联驱动结构中,LED驱动器提供恒流源,短路开关可以关闭单个LED,从而能够根据需要来改变光束。如果在串联驱动电路中增加伴侣芯片(像素控制器),透过系统划分,这样就有可能避免并联拓扑结构所固有的能耗及热管理问题。

 安森美半导体矩阵式汽车LED前照灯方案示意图。
图5a:安森美半导体矩阵式汽车LED前照灯方案示意图。
 
 安森美半导体矩阵式汽车LED前照灯方案示意图(续)。
图5b:安森美半导体矩阵式汽车LED前照灯方案示意图(续)。

安森美半导体的NCV78763降压-升压LED驱动IC在这矩阵式动态智能全LED前照灯中充当电流源,它与集成型像素控制器/伴侣芯片相辅相成。这种模块化方法减少了元件数量,并简化应用流程,因而加速产品上市。
相关资讯
三星引入三星显示为XR头显供应OLEDoS,索尼独供格局生变

三星电子正计划调整其首款Android XR头显Project Moohan(代号“无限”)的屏幕供应链策略,拟将关联企业三星显示纳入OLEDoS(硅基OLED)面板供应商体系,与索尼形成“双供应商”结构。此举旨在打破索尼的独家供应局面,提升供应链韧性及议价能力。尽管三星显示加入,索尼仍将保持第一供应商地位,但三星电子借此强化了长期布局XR市场的战略基础。

先进封装驱动芯片性能革命,台积电产能扩张应对AI浪潮

台积电与苹果共同开发的晶圆级多芯片模块(WMCM)技术标志着先进封装的新高度。作为InFO-PoP的升级版,WMCM融合CoW(Chip on Wafer)与RDL(Redistribution Layer)等尖端工艺。其核心创新在于采用平面封装架构取代传统垂直堆叠逻辑芯片与DRAM,显著提升散热效率与整体性能。这项独家技术将成为苹果下一代iPhone搭载的A20处理器(预计采用2nm制程)的关键性能支柱。同时,苹果自研的AI服务器芯片正稳步导入台积电的3D晶圆堆叠SoIC封装技术,进一步强化计算密度和能效。

算力、智能与控制的融合:英特尔4U工控机、RK3568主板、HPM伺服板的全面对比

在现代工业自动化向智能化、网络化、柔性化加速演进的大背景下,高性能、高可靠、特定场景优化的核心硬件设备构成了系统的“大脑”、“眼睛”和“四肢”。英特尔4U工控机(IPC-615H5)、RK3568高性能监控主板和HPM6400/6300伺服电机控制板分别代表了通用工业计算平台、边缘AI视觉处理平台和高精度运动控制平台的最典型形态。它们在各自的领域拥有独特优势,共同支撑起复杂的工业控制闭环。本文旨在对这三款核心产品进行全方位对比分析,剖析其技术特点、优劣势、应用场景及市场前景,为工业自动化方案选型提供专业参考。

应对AI算力激增:安森美推出全链路数据中心电源解决方案与指南

人工智能技术,特别是生成式AI和大规模机器学习模型的迅猛发展,对全球数据中心的基础设施提出了前所未有的高要求。海量数据的实时处理与复杂模型训练,导致数据中心计算负载激增,随之而来的功耗攀升已成为产业亟待解决的核心瓶颈。这不仅推高了运营成本,也对电网承载能力和可持续发展目标构成严峻挑战。如何在高性能计算需求持续增长的同时,有效控制并降低能源消耗,成为AI数据中心建设与升级的关键命题。

中日芯片巨头强强联手 芯驰X9SP+罗姆PMIC打造智能座舱新方案

2025年6月25日,全球半导体巨头日本罗姆与中国车规芯片领军企业芯驰科技在上海联合宣布,推出面向智能座舱的参考设计"REF68003"。该方案以芯驰科技旗舰级座舱SoC X9SP为核心,集成罗姆多款高安全等级PMIC电源芯片,已在2025上海车展公开展示。