新能源汽车电子系统设计之SOC使用范围的选择

发布时间:2014-11-12 阅读量:1189 来源: 我爱方案网 作者:

【导读】在新能源汽车电池系统设计中,SOC的选择对电池系统的安全性和整车电池性能有着重大的影响。需要权衡各方因素,才能找到电池系统SOC使用区间的最佳方案。以下将详细介绍新能源汽车电池系统的SOC范围选择。
新能源汽车电子系统设计之SOC使用范围的选择
荷电状态 SOC(State of Charge),在《电池手册Handbook of Batteries, 3rd Edition》中的定义为:

SOC=Q1/Q0 =电池可用容量/电池额定容量,电池可用容量和额定容量的百分比.

动力电池系统的SOC需要实现实时在线估算,因此电池的剩余容量多利用车载状态较容易测量的电流、时间、电压和内阻等参数输入预设的模型和算法中进行估算得到。

注:目前的SOC定义是针对电池单体,对于电池系统目前还没有较统一的定义,实际使用过程中,较简单的办法是将电池组等效为电池单体。为确保电池的安全性,常选用电池组中最差电池单体的SOC来表征电池组的SOC。

实际的BMS里面,一般对电池的实际容量,可用容量都要进行估算,特别是随着寿命进行变化的过程,Trick是一个BMS会有循环次数和过往数据进行辅助处理。

汽车电子电池系统设计过程中,SOC使用范围的选择对电池系统的以下几方面有重大影响。

1)安全性

安全性是系统设计首先考虑的因素

混合动力的电池系统通常SOC区间一般会在中间部分,大多会在30%-80%,这样出现过充和过放问题的可能性较小。

注:现在的混合动力,往插电式的演进快速前进,电池大一些带来的成本问题,由于补贴、拍照和油耗积分等因素一下子局面反转了;因此当电动续航里程的强制要求下,上下限的SOC范围往往进一步被拉宽,带来的安全风险,容以后细表。

2)整车&电池性能

电池系统的峰值充放电功率的需求选择SOC的使用范围(此处暂且不考虑冷启动的需求影响和传递效率问题)

    1、电机及电机控制器等负载的峰值放电功率要求 Pdis_max≥ Pl_peak,保证在其SOC使用范围内电池组的峰值放电功率应大于负载的最大功率需求。

    2、能量回馈过程的峰值充电功率要求 Pcha_max≥ Pr_peak ,为了尽可能多的接受回收的能量,应满足所设定的峰值充电功率要求

    3、峰值充放电功率所对应的持续时间

    4、电池系统在其SOC范围内必须满足负载的峰值功率要求。

新能源汽车电子系统设计之SOC使用范围的选择

对某电池系统建立SOC与其充放电10秒峰值功率的关系图,据充放电功率的要求,只有SOC在20%~50%才能满足系统所需的功率要求

SOC控制区间的选择还要根据整车工况能量需求确定

Step 1 梳理整车需求,爬坡、加速等
Step 2 计算最低可用能量
Step 3 筛选待选方案,选择不同规格的电池系统进行模拟仿真
Step 4 分析针对不同电源系统产生的油耗情况=>决定电池系统的最低可用能量
Step 5 依据动力系统的电压平台=>选择适当的总能量与SOC使用范围

注:这个电压平台的事情,是综合考虑的,我曾问一位美国的工程师,丰田用DC-DC提升电压,为啥我们不用?他言及是部分人的想法,不想那个IGBT热应力导致很多车召回。真要做决策做系统分析,最重要的还是拿出更多的评测数据,然后进行分类和整理。

SOC使用范围的选择应考虑系统效率的最优区间

电池系统,能量分别分配到电池系统内部阻抗和外界负载上,输出效率取决于电池系统内阻。

电池在混合动力模式下用于功率调峰,应当经常工作在内阻较低的SOC范围内。

新能源汽车电子系统设计之SOC使用范围的选择
 
上图为某款三元锂离子电池应用HPPC测试方法测得电池不同SOC下的功率分布,在SOC中间区域内阻较小,此区域内对外输出效率较高。

效率是考核电池系统的重要指标,对整车来说系统能量效率越高越好。

根据整车的应用工况,测试不同SOC范围内的能量效率,确定最大的能量效率下的SOC应用范围。

通常充电和放电电压最平稳的阶段就是能量效率最好的区间=>充电或者放电电压不会有较大的变化能量效率最稳定,且较高。

     ·计算方法为:电压平台区,电压对时间求导得到倒数绝对值较小的区域。不同的SOC区间,电池系统内各电池单体的一致性不同 =>尽量选择一致性较高区域,来保证较高的系统输出效率

     ·SOC较高和较低的区域的电池参数的偏差较高

     ·中间区域的一致性偏差较低

针对四个电池模组进行电压极差检测,电池在40%~80%的区域极差较小,电池一致性较高。

注:这块内容,用广义的来看,就是燃油经济性的系统性分析,电能损耗直接反映出来的就是油耗水平。


3) 电池系统寿命

对于电池系统而言,不同的SOC的使用区间对应不同的系统寿命。系统SOC区间越大,寿命越小,其循环寿命基本符合指数增长。但是如果单方面为了增长系统寿命而加大电池系统的能量,来减小SOC使用区间,对于系统成本和系统布置都会产生不利影响.

考虑电池系统的成本接受程度=>成本变化对整车成本是个非常敏感的因素。

相同的SOC使用区间,但是起始点不同的话,即同样的DOD(depth of discharge 电池放电深度)范围,相同SOC使用区间情况下的其系统寿命也存在差异。

新能源汽车电子系统设计之SOC使用范围的选择
此处考察点就是对SOC均值的影响,在同样的△SOC=20情况下,针对不同的SOC均值(35%,45%,55%)的吞吐量与SOC的关系可以发现,均值越小,其寿命越长。

4)其他考虑因素

SOC使用区间的选择中还需要考虑

1、容量方面的需
2、电池系统老化
3、BMS检测误差的影响等因素

总而言之,SOC使用区间的选择应该综合权衡以上各个影响因素,并且以上因素可能相互制约,只有在这些因素中找到平衡点,才可以获得的SOC使用区间的最佳方案。
相关资讯
AI引爆芯片扩产潮:2028年全球12英寸晶圆月产能将破1100万片

国际半导体产业协会(SEMI)最新报告指出,生成式AI需求的爆发正推动全球芯片制造产能加速扩张。预计至2028年,全球12英寸晶圆月产能将达1,110万片,2024-2028年复合增长率达7%。其中,7nm及以下先进制程产能增速尤为显著,将从2024年的每月85万片增至2028年的140万片,年复合增长率14%(行业平均的2倍),占全球总产能比例提升至12.6%。

高通双轨代工战略落地,三星2nm制程首获旗舰芯片订单

据供应链消息确认,高通新一代旗舰芯片骁龙8 Elite Gen 2(代号SM8850)将首次采用双轨代工策略:台积电负责基于N3P(3nm增强版)工艺的通用版本,供应主流安卓厂商;而三星则承接其2nm工艺(SF2)专属版本,专供2026年三星Galaxy S26系列旗舰机。此举标志着高通打破台积电独家代工依赖,三星先进制程首次打入头部客户供应链。

美光2025Q3财报:HBM驱动创纪录营收,技术领先加速市占扩张

在AI算力需求爆发性增长的浪潮下,存储巨头美光科技交出超预期答卷。其2025财年第三季度营收达93亿美元,创历史新高,其中高带宽内存(HBM)业务以环比50%的增速成为核心引擎。凭借全球首款12层堆叠HBM3E的量产突破,美光不仅获得AMD、英伟达等头部客户订单,更计划在2025年末将HBM市占率提升至24%,直逼行业双寡头。随着下一代HBM4基于1β制程的性能优势验证完成,一场由技术迭代驱动的存储市场格局重构已然开启。

对标TI TAS6424!HFDA90D以DAM诊断功能破局车载音频安全设计

随着汽车智能化升级,高保真低延迟高集成度的音频系统成为智能座舱的核心需求。意法半导体(ST)推出的HFDA80D和HFDA90D车规级D类音频功放,以2MHz高频开关技术数字输入接口及先进诊断功能,为车载音频设计带来突破性解决方案。

村田量产全球首款0805尺寸10μF/50V车规MLCC,突破车载电路小型化瓶颈

随着汽车智能化电动化进程加速,自动驾驶(AD)和高级驾驶辅助系统(ADAS)等关键技术模块已成为现代车辆标配。这些系统依赖于大量高性能电子控制单元(ECU)和传感器,导致车内电子元件数量激增。作为电路稳压滤波的核心元件,多层片式陶瓷电容器(MLCC)的需求随之水涨船高,尤其是在集成电路(IC)周边,对大容量电容的需求尤为迫切。然而,有限的电路板空间与日益增长的元件数量及性能要求形成了尖锐矛盾,元件的高性能化与小型化成为行业亟待攻克的关键难题。