激光焊接电动智能汽车电池的设计

发布时间:2014-12-6 阅读量:1069 来源: 我爱方案网 作者:

【导读】未来三年,所有的主要汽车制造商和一些新创办的企业都将为消费者和商业市场引进某种形式的混合动力、插电式混合动力或电动汽车。虽然内燃机仍将在未来数年主导市场,但随着碳氢燃料成本的提升,电气驱动系统将获得市场份额。

电动汽车中的电气驱动系统需要新型锂离子电池技术。虽然锂电池已应用于手机和笔记本电脑多年,但应用于交通工具的电池要为系统提供极大的功率。这些驱动系统的使用寿命还不能低于十年。为了能在成本上与内燃机一较高下,电池系统还需要将成本降至当前的一半以上。只有可靠而廉价的新制造方法才能满足这些需求。

接合技术的工业现状


数年来EWI公司一直与高级电池企业合作,致力于这一挑战。2010年9月举行的电池制造技术研讨会上,EWI就目前在电池和电池组组装中使用的连接技术对业界进行了调查(见表1)。结果显示,由于锂离子电池是多层厚度不一(0.001至0.0625英寸)的材料(铜、铝、镍和镀镍铜)的复合组件,这种电池的制造需要组装大量零件,包括不同材料之间的接缝。为了组装这些零件,业界使用了各种工艺,包括钎焊、电阻、超声波和激光焊接。表1中的调查结果显示,没有一种连接工艺占主导地位。没有哪一种工艺得到人们的认同可以用于各种材料的几何组装。

激光焊接电动智能汽车电池的设计

经过此次调查,EWI和美国俄亥俄州立大学汽车研究中心设立了一个项目,来调查连接组装锂离子电池和电池组的材料组合的电阻、超声波和激光焊接工艺。目的是研究数据资料,帮助业界找到一种工艺来连接装配中的各个部件。

激光的优势


激光焊接因其工艺极为灵活和精确而具有吸引力。可以依据尺寸和形状来调整焊缝,以适合狭小的空间,也适用于各种设计。由于激光焊接是非接触式工艺,有效焊接光束可以进入到超声波或电阻焊接头无法进入的狭小空间。这种焊接工艺速度极快,尽管是一种熔化工艺,却不会造成大热输入。

实验


人们采用功率为600瓦的IPG YLR-600-SM连续波掺镱光纤激光器来进行这一研究。该激光器释放出波长为1070纳米的光束,并利用一个100毫米焦距的镜组(理论上可以产生9微米的斑点)将光束传输到工件上。尽管铝和铜对于1000纳米的红外波长具有高度反射性(>90%),但在焊接时能利用到总功率的55%至75%(330至450瓦)。

一个扫描速率为200~400毫米/秒的二维运动控制系统被用来进行焊接。这一激光研究包括一个完整的析因设计实验, 囊括了所有可能的材料组合(铝1100或1145,铜110,镍200,无电镀镍铜,电镀镍铜);是否使用氩保护气体;以及定向样本。大多数研究都是在125微米厚的材料上进行。所有焊接都通过基底完全穿透。两种极耳焊接的横截面如图1所示。

激光焊接电动智能汽车电池的设计

为简单起见,这些激光焊接只单次扫描25毫米宽的测试样本。然后对这些焊接的机械和电气性能进行评估。利用搭接剪切和弯折试验进行机械评估, 利用阻焊电源提供的大电流脉冲进行电阻评估。脉冲范围从400至1000安。

 

结果

激光焊接能为各种材料组合提供高强度焊接,尤其是在进行铜材料之间和铝材料之间焊接的时候更为有效。这也是唯一可以将电镀镍焊接至铜材料上的技术。在这些实验中, 使用氩保护气体与否,对于焊接的机械性能或电气性能都没什么影响。唯一的区别在于未使用氩保护气体的焊接表面氧化程度要高于使用氩保护气体的焊接表面。

将激光焊接成品的性能与阻焊及超声焊技术制成的成品相比较,也很有意思。如图2所示,同类材料激光焊接的搭接剪切强度是超声波或电阻焊接的数倍。抗撕强度也要高于超声波或电阻焊接,如图3所示。

激光焊接电动智能汽车电池的设计

激光焊接电动智能汽车电池的设计

图4 显示对于不同的材料组合来说,超声焊和电阻焊的抗撕强度似乎更大。但是不同工艺之间的差异不大,在撕开基底的时候,样本经常被毁,可见焊接材料和基底材料一样牢固。

评估焊接的电气性能也甚为有趣。使用三种工艺制成的搭接头显示出了几乎一致的电阻性。结果分析表明尽管激光焊接区域比电阻或超声波焊接区域要小很多,但搭接头的电阻与所使用的焊接工艺无关。相反,电阻与搭接头的材料有关,而不是与焊接工艺有关。

激光焊接电动智能汽车电池的设计

存在的挑战


虽然激光焊接非常适用于生产电池组,但应用于这一产业仍存在挑战。

成功的激光焊接要求被焊基材之间紧密接触。这需要仔细紧固零件,以取得最佳效果。而这在纤薄的极耳基材上很难做好,因为它容易弯曲失准,特别是在极耳嵌入大型电池模块或组件的情况下。

电池组装行业希望利用现有的焊接设备来收集加工数据,以跟踪焊接工艺,实现质量控制。超声波和电阻焊接设备目前已能提供这信息。另一方面,激光系统是定制的激光器、光学器件和运动控制系统的组合,专为某种应用量身定制。目前尚没有现成的设计用于电池极耳组装的激光焊接系统,能够提供加工监控信息以确保焊接质量和可靠性。

最后, 要注意激光焊接是一个熔化过程。这意味着两个基底在激光焊接过程中会熔化。这一过程很快,因此整个热输入较低。但因为这是一个熔化过程,在焊接不同材料的时候就可能形成易碎的高电阻金属间化合物。铝-铜组合特别容易形成金属间化合物。这些化合物已证明对于微电子设备搭接头的短期电气性能和长期机械性能有负面影响。这些金属间化合物对于锂电池长期性能的影响尚不确定。

结论


激光焊接是组装电池组件时搭接电池极耳的明智选择。该工艺极为迅速高效,并为所有材料组合提供高强度的焊接。这一工艺容易适用于多种搭接头设计。与超声波焊、电阻焊相比,激光焊接铝、铜和镍同类材质时具有更好的抗剪切和抗撕强度。激光焊接应用于连接铝和铝以及铜和铜材料时尤为成功。如果集成商能够为电池/电池组制造商开发出现成的系统,激光焊接就能够和其它用于电动汽车电池组、电池块组装市场的现有技术相抗衡。

相关文章

智能汽车英飞凌KP200压力传感器系统的解析方案

智能汽车基于双制动模式的电动汽车制动能量回收方案

应用于智能汽车动力电池的铅酸电池、锂电池的对比设计

相关资讯
TDK完成收购QEI射频电源业务 强化半导体设备市场竞争力

日本电子巨头TDK株式会社宣布正式完成对美国QEI Corporation电力业务资产的收购。QEI总部位于新泽西州威廉斯敦,专注于半导体制造关键环节——等离子体工艺所需的射频(RF)发生器及阻抗匹配网络研发,其技术广泛应用于晶圆刻蚀与薄膜沉积等核心制程。

2025中国西部微波射频技术盛会:前沿洞察与产业赋能

在全球数字化转型加速推进的关键时期,微波射频技术作为通信、航空航天、国防等前沿领域的核心引擎,正驱动着前所未有的创新浪潮。成都,作为中国西部电子信息产业重镇,依托雄厚的科研实力、完善的产业链和丰富的人才资源,在微波射频领域展现出蓬勃活力和巨大潜能。值此发展良机,备受业界期待的 “2025中国西部微波射频技术研讨会暨第三十届国际电子测试测量研讨会” 将于2025年盛夏在蓉城盛大启幕!本次大会旨在汇聚行业智慧,共探技术前沿,为加速产业发展注入强劲动力。

微软自研AI芯片遭遇重大延迟 追赶英伟达之路愈发艰难

科技巨头微软在自研AI芯片领域遭遇严重挫折。据最新内部报告显示,其首款自主研发的人工智能芯片(代号Braga)推出时间将推迟至少六个月,量产计划被推迟至2025年,最终上市预计拖到2026年。更严峻的是,即便届时推出,其性能也将显著落后于英伟达当前已上市的Blackwell架构旗舰芯片。

新华三首发国产化800G智算交换机,加速自主智算底座构建​

在2025中国国际金融展上,新华三集团正式推出业界首款通过工信部进网认证的800G国产化智算交换机H3C S9825-8C-G。该产品搭载自主研发的25.6T高速芯片,国产化率达95%以上,专为破解新一代智算中心的高带宽、低时延网络瓶颈而设计,标志着我国在高端网络设备领域实现关键突破。

京东方OLED产能突破年产1亿片 加速争夺苹果供应链主导权​

根据UBI Research 6月27日发布的最新报告,京东方已建成26条专供苹果的OLED模块产线,其中11条实现大规模量产。其B11核心产线若专注iPhone面板生产,按90%开工率和85%良率测算,年产能可达1亿片,标志着中国面板巨头产能建设进入新阶段。