基于MSP430的无线充电触屏遥控设计方案

发布时间:2014-12-19 阅读量:1077 来源: 我爱方案网 作者:

【导读】该方案使用MSP430F6638 作为主处理器,实现了触屏遥控器的电子模块设计。适用于遥控器,无线设备以及其它需要按键和显示的应用场合。MSP430 丰富的产品线也为前述应用场合提供了丰富的选择,可根据具体需求选择合适的产品,达到最优性价比。

遥控设备在日常生活中非常易见,家电遥控器、玩具遥控器等方便了用户对设备的控制。针对不同需求,遥控设备设计也不同,例如电视机遥控器不带显示屏,通常用红外信号传输;空调遥控器则带显示屏,常用红外(IR)和射频(RF)传输信号;另有一些高端遥控产品可通过手机等更新固件,实现版本的升级。本文介绍了一套用于遥控设备的通用方案,该方案支持 LCD 显示;支持红外通信且可扩展射频通信方式;用户输入采用触摸按键实现,时尚美观;本方案预留NFC 接口,可扩展 NFC 功能;在电源管理方面,支持电池供电,USB 充电和无线充电,方便实用。

一、方案原理介绍

1.电容式触摸按键原理

触摸按键在电子设备中得到越来越多的应用。用触摸按键实现人机交互的电磁炉,微波炉,电冰箱等家电产品越来越受青睐,预计未来会有越来越多的触摸按键产品取代传统的机械式按键产品。触摸按键具有坚固耐用,反应速度快,节省空间,美观大方,易于清洁等诸多优点。触摸式按键可分为四大类,电阻式,电容式,红外线式及表面声波式感应按键。其中电阻式,红外线式和表面声波按键主要应用于触摸屏中,在单个按键中很少使用。本方案将重点讨论电容式触摸按键在单个按键中的应用。

电容式触摸按键采用电容量为判断标准,在触摸按键的设计中,它具有一些优点,例如可直接集成在 PCB 中,触摸感应区域外形尺寸设计灵活,相对成本较低等等。简单来讲,电容式触摸按键在按下的时候改变了电容值,从而改变电路振荡周期,通过对振荡周期改变值的检测实现对按键的检测。图1 是电容式触摸按键原理示意图。

基于MSP430的无线充电触屏遥控设计方案
图1 触摸按键原理示意图

空载状态下,感应区域电容由材料和结构决定(图1 左上图),电容值为C1+C2.变化电容基于寄生效应,主要由外界导体与PAD 之间的寄生电容组成(图1 右下图),手指按下,寄生电容值变化,容值为C1+C2+C3||C4。将此电容接入电路组成振荡器,电容值的改变导致振荡电路输出频率变化,通过测量输出频率判断按键的触发状态。

按键感应区域设计需要避免误触发以及兼顾灵敏度。通常来说,单个按键感应区域需要做的足够大,以达到识别按键目的;相邻按键感应区域应保持一定距离,避免误触发;触摸感应区形状原则上可任意,单个按键以圆形、方形为佳。

2.红外信号传输原理


红外遥控原理可参考文档[2]。本文采用 NEC 协议编码,简单说是通过脉冲串之间的时间间隔来表示逻辑“0”和逻辑“1”。载波信号频率为38k,逻辑“1”用 0.56ms 的38k 载波和 1.5ms的无载波表示,逻辑“0”用0.56ms 的载波和0.56ms 的无载波表示,帧头用9ms 载波加4.5ms无载波表示。编码帧格式参考图2,具体格式定义可根据实际情况稍作修改。

基于MSP430的无线充电触屏遥控设计方案
图2 红外编码数据帧格式

MSP430 系列 MCU 自带 Timer,可方便产生 38k 载波,编码时的载波有无控制可由Timer 的 PWM 输出模块实现。其 PWM 输出模块可配置成7 种输出方式,可方便实现上述编码。采用MSP430 的Timer 的PWM 输出功能,仅需要一个Timer 和一路PWM 即可轻松实现红外编码,无需额外硬件,软件实现简单。为系统设计节省成本和开发时间。

3. 可充电触屏遥控模块方案设计

传统的遥控模块采用机械按键实现,本方案采用触摸按键设计,按键和显示在同一块LCD 屏上,外形时尚、美观。本方案作为参考设计,除了遥控器基本功能(按键,显示,发射,按键声)外,还设计了充电和USB 模块,并扩展了RF 和NFC接口。可充电方式提高了灵活性,用户仅需要充电而不必更换电池。USB 模块可实现和PC 端应用软件通信。本方案不仅仅是遥控器方案,在其他应用领域,本方案也有很大的参考价值,用户仅需要根据需求对本方案功能模块进行裁剪即可。本方案电源模块支持电池供电和USB 或直流适配器充/供电;触摸按键采用比较器B实现;RF 和NFC 模块采用SPI 和MCU 接口;MSP430自带的USB 模块可方便与PC 端应用软件接口,实现PC 和MCU 的双向通信。系统框图如图3 所示。

基于MSP430的无线充电触屏遥控设计方案
图3 系统框图
 
 
二、 方案硬件设计

1、电源模块设计

本系统采用电池供电,且设计了充电电路,支持USB或直流充电。电源经LDO稳压后输出3.3V 供给MCU,保证MCU 工作电压的稳定。其电路实现如下图4 所示。
 
基于MSP430的无线充电触屏遥控设计方案
图4 电源模块电路设计

2. LCD及背光模块设计


MSP430F6638自带LCD控制器,可方便地驱动段式LCD屏。屏幕背光亮度由Timer输出PWM波控制,调节方便。背光电路设计如图5 所示。通过改变PWM 的频率和占空比,可改变背光亮度,从而改变LCD屏视觉效果。
 
基于MSP430的无线充电触屏遥控设计方案
图5 背光电路设计

3.触摸按键设计

MSP430F6638自带比较器B,最多可支持12个触摸按键,比较器B的输出接入Timer的CLK 输入端,当手指按下,触摸感应区电容值发生了变化,比较器翻转周期变长,比较器输出作为 Timer 的计数脉冲,在固定的时间内计数值变小,根据固定时间内Timer 计数值的变化来判断按键动作。通过合适配置寄存器和软件算法处理,可实现触摸按键检测。电路设计如图 6 所示。注意为了降低噪声,每通道外接电阻不宜过小,可选500k 左右。比较器B 翻转电平通过配置寄存器实现。
 
基于MSP430的无线充电触屏遥控设计方案
图6 触摸按键电路设计

4. 红外发射模块设计

红外模块采用普通红外管实现,通过配置Timer输出合适的PWM波实现红外编码。红外发射瞬间电流较大,通过MCU 的GPIO控制三极管驱动红外发射灯管,提高发射电流。红外发射模块需配合接收模块采用同样的编码格式实现通信。红外模块电路图如图7 所示。
 
基于MSP430的无线充电触屏遥控设计方案
图7 红外发射模块

5. USB模块设计

MSP430F6638自带USB模块,可实现USB通信,其硬件设计简单。本文用USB虚拟UART 实现和PC 通信。
 

三、方案软件设计


1、 嵌入式软件设计

系统软件流程如图8 所示。无按键动作时,系统运行RTC,显示当前时间,温度且把时间,温度以及按键状态(每个按键动作有无)信息发送给PC。当有按键按下后,除了上述功能外,系统还将执行按键上层逻辑,比如是否进入时间设定模式,是否开蜂鸣器以及发射哪种红外码等等。

2、PC端软件设计

为了方便实现人机交互,使用C Sharp语言开发了配套的PC端软件实现和MCU的双向通信。通过PC端软件可查看DEMO的当前状态,包括时间,温度,按键动作等,另外也可通过PC 端改变DEMO 背光的亮度。PC 端软件如图9所示。
 
基于MSP430的无线充电触屏遥控设计方案
图8 软件流程图
 
基于MSP430的无线充电触屏遥控设计方案
图9 PC 端软件

DEMO 通过USB线与PC端COM口连接,MSP430F6638 的 USB 通过软件协议虚拟UART,在PC端选择合适的COM 端口号可实现PC软件和 DEMO 的互连。图9中左图反映DEMO 的实物,当有按键按下的时候,对应的按键图标闪烁一下,同时在记录框输出文字记录这个动作(Button xx Pressed!)。最下面图表则实时显示当前温度信息。

2、 DEMO展示

DEMO 实物如图10所示。键盘区12个按键,每个按键按下图标会闪烁一下,同时蜂鸣器会响0.3s左右。每个按键做了不同功能,可根据需求发射不同的红外码实现遥控器的功能。演示DEMO中代码支持RTC和温度计功能,支持灵活调整时间,同时可通过PC端软件来调节屏幕背光。DEMO还可扩展光传感模块,可根据环境光强弱智能调节背光亮度,达到较好的视觉效果。

该DEMO具有通用性,在所有需要显示和人机交互的微控制系统中均可参考此方案,只需对FW 做简单修改即可实现所需功能。同样,MSP430 系列众多的产品线为客户提供了不同成本的多种选择。客户可根据具体需求选择合适的MCU和合适的代码模块组合,以实现最高的性价比。
 
基于MSP430的无线充电触屏遥控设计方案
图10 DEMO 实物

四、总结

本方案使用MSP430F6638 作为主处理器,展示了用其实现触屏遥控器的电子模块设计实例。在遥控器,无线设备以及其它需要按键和显示的应用场合均可参考本方案。MSP430 丰富的产品线也为前述应用场合提供了丰富的选择,客户可根据具体需求选择合适的产品,达到最优性价比。
相关资讯
2025全球大尺寸显示器市场趋势解析:技术迭代与竞争格局

根据市场研究机构Omdia最新报告,2025年全球大尺寸(9英寸以上)显示器市场将进入结构性调整阶段:尽管整体出货量增速放缓至2.6%,但技术迭代加速、应用场景深化与区域市场分化成为核心驱动力。与此同时,中国PC显示器市场在电竞、医疗等细分领域的强劲需求推动下,预计实现1.5%的稳健增长。本文基于行业权威数据,深度解析技术、市场与竞争格局的演进逻辑。

200V高压侧驱动技术解析:IXD2012NTR在新能源与储能市场的竞争优势

随着新能源、储能及工业自动化市场的快速发展,高频功率器件对驱动技术的要求日益严苛。2025年5月13日,Littelfuse公司推出全新高压侧/低压侧栅极驱动器IXD2012NTR,以200V耐压、1.9A/2.3A拉灌电流能力及高集成特性,为高频电源应用提供高效解决方案。本文将深入分析其技术优势、国产替代潜力及市场前景,并对比同类产品性能。

三星Galaxy S25 FE处理器方案引关注:供应链与性能的博弈

据科技媒体wccftech 5月12日披露,三星电子正在筹备新一代Galaxy S25 FE智能手机的研发工作。这款定位中端市场的机型原计划搭载自研Exynos 2400e处理器,但最新供应链消息显示,三星正评估联发科天玑9400作为替代方案。此举或反映三星在产能分配与产品定位间的战略调整。

七年连冠!贸泽电子再获Molex亚太区年度大奖,数字化服务赋能全球创

在全球电子元器件分销领域,贸泽电子(Mouser Electronics)再次以卓越表现成为行业焦点。2025年5月13日,该公司宣布连续第七年蝉联Molex颁发的亚太区(APAC)年度电子目录代理商大奖。此次获奖主要基于其在2024年客户增长率、销售业绩、库存管理效率及整体运营能力的综合优势,进一步巩固了其作为全球顶级代理商的市场地位。自2018年起,贸泽便以稳定的增长态势和行业领先的服务标准,持续获得这一殊荣,展现了其对亚太市场的深度理解和战略布局。

高隔离+快响应!VO1401AEF如何破解工业自动化痛点?

2025年5月13日,威世科技(Vishay)发布了两款1 Form A固态继电器VO1401AEF与VOR1003M4,采用表面贴装型SOP-4封装,分别支持550 mA和5 A连续负载电流,负载电压覆盖30 V至60 V,隔离电压达3750 VRMS。这两款产品以非接触式光学技术替代传统机电继电器,解决了振动敏感场景下的可靠性问题,并通过快速响应与低漏电流特性推动工业自动化、医疗器械等领域的效率提升。