发布时间:2015-10-7 阅读量:2396 来源: 我爱方案网 作者:
一.概述
数字图像处理自从出现以来,就一直是前沿的研究学科,经久不衰,同时随着数字化时代的到来,市场对于数字图像处理的需求也越来越大。因此,本项目------基于FPGA的多功能数字图像采集及处理平台主要是为各种需要进行数字图像处理的设备和应用而设计的, 例如, 医学上的CT, X-ray等图像增强及处理; 各种需要支持图像优化的数码设备等。 同时此平台也可用于数字图像处理相关课程的设计参考及教学演示。
项目优势
基于FPGA的多功能数字图像采集及处理平台是一个多用途,多功能的数字处理平台, 相比于其他同类设计,有以下优势:
1 采用可编程的FPGA进行设计,便于设计的更新,减少因此带来的升级费用;
2 本平台采用硬件实现,相比于采用DSP的软件实现方法,处理的速度更快;
3 各模块之间相互独立,便于设计的复用,经过简单处理后即可用于其它项目;
二.需求分析
2.1 功能分析
根据本项目的设计目标,本设计需要完成的功能有:
(1) 可以对输入的数字图像进行基本的图像增强,图像平滑,图像锐化,直方图均衡化,直方图标准化等操作,也可以进行频域相关的巴特沃思滤波,高斯滤波等操作。
(2) 可以通过组合各种不同的基本图像处理过程,完成诸如图像边沿检测等高级处理。
(3) 可以输入CMOS传感器转换的YCrCb格式图像数据,并转换为RGB格式。
(4) 可以通过USB接口提供数字图像处理器的图像数据进行处理。
(5) 可以将处理过的图像保存在Flash中,并且能够通过VGA显示处理过程中生成的图像。
三.方案设计
3.1 系统功能实现原理
本设计采用Xilinx公司的Nexys 3 Spartan-6 FPGA Board开发板,利用其上的Xilinx Spartan®-6 FPGA (XC6LX16-CS324) 的大容量逻辑资源完成各个模块。本设计总体硬件框图如图1所示。从图1中可以清楚地知道系统主要由USB设备控制单元,颜色空间转换单元,用户控制输入单元,总体控制单元,双口RAM控制单元,Flash控制单元,显示控制单元和图像处理单元组成。
系统的工作原理如下所述:总体控制单元根据用户控制输入单元选择双口RAM输入端的数据源,然后图像处理单元读出数据根据用户控制输入单元输出信号对图像进行相关的处理并输出到显示RAM中,由显示控制单元显示到VGA上,并根据用户输入是否保存到Flash中。各单元模块的具体说明请参考
3.2 硬件平台及资源配置
图1:总体硬件框图
3.2 硬件平台及资源配置
3.2.1 USB控制单元
USB控制单元是整个系统数据来源方式之一,在系统中占据重要位置。首先让我们看一下其组成框图,如图2所示。
图2:USB控制单元框图
由上图可知,USB控制单元主要由USB Packet Assemble/Dissemble,USB PL,USB FSM,EP Buffer组成。其中USB FSM主要实现USB功能设备,和Host Computer通信;USB Packet Assemble/Dissemble主要完成USB数据包的解包和打包,USB PL(USB Protocol Layer)实现USB协议;另外和USB PHY通信的模块未画出。
3.2.2 颜色空间转换单元
颜色空间转换单元完成将CMOS输入YCrCb格式数据转换成RGB数据的操作,其组成框图如图3所示。
图3:颜色转换单元
由YCrCb转换成RGB的格式如下:
R = Y + 1.371 * (Cr - 128);
G = Y - 0.698 * (Cr - 128) - 0.336 * (Cb - 128);
B = Y + 1.732 * (Cb - 128);
由于硬件实现特殊性,上式改为:
R = Y + 1403 * ( Cr - 128 ) /1024;
G = Y - 714* ( Cr - 128 ) /1024 - 344 * ( Cb - 128 ) /1024 ;
B = Y + 1773 * ( Cb - 128 ) /1024;
3.2.3 图像处理单元
图像处理单元是本系统中最重要的单元,主要完成数字图像处理相关的工作,如直方图均衡化,图象锐化,以及频率滤波等操作。其框图如图4所示:
图4:图像处理单元
图像处理单元有基本的数字图像处理模块如直方图均衡化,图象锐化,以及频率滤波等组成,可以根据用户的选择进行不同的组合来完成特定的任务或目的(如图像边沿检测等)。
3.2.4 其它控制单元
其他控制单元如总体控制单元,用户输入控制单元,双口RAM控制单元,Flash控制单元主要完成系统运行过程中的控制和流程控制等操作。
3.3 系统流程图
由以上系统各模块的分析,各模块功能及系统总体架构已经有整体了解,现在就介绍一下系统整体的运行流程情况。
系统整体流程图如图5所示:
图5:系统流程图
上图是简化了的系统流程图,可以看出系统中数据流经的主要路径。上电初始化后,根据用户控制输入单元选择双口RAM输入端的数据源,然后图像处理单元读出数据根据用户控制输入单元输出信号对图像进行相关的处理并输出到显示RAM中,由显示控制单元显示到VGA上,并根据用户输入是否保存到Flash中。
推荐阅读:
小型化轻量化电源设计方案
实时噪声频谱仪的系统实现设计方案
基于AVR单片机控制的LED照明系统解决方案
新触控式酒精锁车技术,使用生物传感器防醉驾
2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。
2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。
2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。
2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。
2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"