LCD显示电压示波系统设计方案

发布时间:2015-10-22 阅读量:1119 来源: 我爱方案网 作者:

【导读】本文LCD显示电压示波系统设计以ARM7微处理器为核心,采用ARM7中的高速A/D为测压单元,提高了数据传输的可靠性;数据结果通过LCD实时显示,显示方式友好直观;采用RAM和UART分别存储和传输数据,实现了监测数据的长期存储和与PC的通信传输。

另外,本设计还采用了31/2位或41/2位段位式LCD液晶数码显示器的仪表已不罕见,但段位式LCD显示器的功能较局限。对于多功能的智能仪表,采用点阵式LCD液晶显示模块,可提供更为丰富灵活的显示内容。点阵式LCD显示模块是一种集显示、控制与驱动与一体的显示器件。为了简化电路,充分发挥ARM的性能,采用了320×240的16级灰度LCD。

系统总体方案设计

本系统要求软件完成的功能有以下几个方面。

● 实时数据采集功能。系统要求能够实时采集外部电压的实时数据。
● 采样数据处理功能。在系统对实时数据采集完成后,要对数据进行实时处理。实时处理主要是将外部电压进行高速A/D转换,然后动态显示。系统还可利用按键对超过报警设定值进行动态修改。
● LED显示和RTC功能。本实验充分利用了LED显示和实时时钟功能。
● 报警处理功能。将实时数据与人机对话设定电压测量最大值进行比较,之后做出报警动作。
● 显示最大值功能。将实时数据中的最大值给予保存和显示。
● 利用EEPROM读写数据功能。系统可以在上电时读取110位上次运行的实时数据,并作为这次的历史数据。系统还可以按键来存储当前的110位实时数据。
● 串口发送数据功能。系统可通过按键,通过串口将100位实时数据发送到上位机显示。

为了实现系统的模块清晰,本系统采用了μC/OS-II操作系统。按照上述要求,本系统将软件划分为4个功能模块:A/D采集模块、LED 显示和按键处理模块、LCD显示模块、报警、存储及串口处理模块。采样模块完成对实时数据的采样并保存;LED显示按键处理模块主要功能是对采样数据的处理,并把它们转换成有实际意义的参数;LCD显示模块是将各种参数在LCD显示出来;报警、存储及串口处理模块主要是实时对实时数据进行相应的处理。图1 即为总体系统设计整体结构图。
 

图1:系统硬件组成及功能

1 LCD显示部分

液晶显示器(LCD) 具有功耗低、体积小、重量轻、厚度薄等许多其他显示器无法比拟的优点,普遍应用于基于微处理器的仪器仪表及监视、控制等智能装置的终端显示和人机接口中。 STN LCD——市面上销售的单色LCD绝大多数都是这种类型。STN LCD可选择自带LCD驱动器/控制器的STN LCD模块。TFT LCD——即俗称的“真彩色”液晶。TFT LCD通常一定要选择总线型液晶显示器,或者外接ARM的LCD驱动板也可以,总之要能够连接单片机或者ARM。

2 LED显示与键盘模块

键盘显示部分是利用我们最熟悉的8位LED数码显示加8位键盘输入。图2是自制的LED显示与键盘模块的电路图。利用了飞利浦公司的SPI总线,简单实用,有五根针脚引出。

 

图2:LED显示与键盘模块

系统软件设计

1 设计思想

在此简易示波系统中,我们采用了LPC2138这种高性能ARM,由于ARM处理器处理速度极快,并且它内部带4路A/D转换。我们知道,ARM中的Fpclk是ARM外设的频率,常规情况下,是ARM内核工作频率的1/4,但我们可以自行修改设定 Fpclk等于ARM内核的频率Fcclk,然后我们自行设定A/D转换功能不分频,并且可以设定采样的精度设为8位,这样每A/D转换一次的时间就等于 ARM的内核工作频率的9倍的时间,这样每次A/D的时间就相当快了,这时我们再采用两路A/D间隔采样,这样每次A/D的时间就又缩短了一半。理论上讲,这时的每次A/D采样时间差不多为2μs。这样,此系统的对外部电压的响应速度就提高了一个档次了,所以此系统的A/D性能比较高。

2 任务的划分

根据任务的划分原则,分析得出了6个任务:延时创建采样任务、采样任务、报警任务、实时时钟显示任务、串口任务、采样数据显示任务。其中采样任务安排优先级最高优先级为4,采样数据显示任务优先级为7,串口任务优先级为8,报警任务优先级为9,实时时钟显示任务为 10。为了进行初始化工作,在延时创建采样任务中增加了对目标板的初始化和任务、互斥信号量、信号量的创建工作等内容。

3 共享资源的分析

在本测试要求中,采样的数据既要实时地放到LCD液晶屏上显示,而且还可以通过串口上传到上位机上,因此要采取资源同步的方法,否则有可能破坏时间,实现资源同步的方法一般有两种:关中断;使用互斥信号量。在本测试中使用互斥信号。

4 行为同步

在本测试中要用到两个行为同步,第一个是采样的数据的显示,测试要求把当前采样的数据通过LCD液晶屏上显示出来,所以要在数据显示任务中要等待采样任务完毕的信号量,当采样完毕后,发送信号量,把当前采样的结果显示出来。第二是查询历史记录,用户要查询历史记录时,才把记录显示出来,所以在查询历史记录任务里设置等待查询信号。任务之间相互配合和协调,才能得到预定的效果,这样可以实现任务的同步。

 

图3:采样任务流程图

5 软件设计模块

嵌入式操作系统是嵌入式系统硬件和应用软件之间的接口,它的使用可以提高软件开发效率,它的可靠性和稳定性直接影响着系统的运行性能。本软件设计采用公开源码的μC/OS-II多任务实时操作系统。μC/OS-II作为一个实时微内核,实际上是一个高效的任务调度器,调度是线程级的,调度策略是采用静态分配优先级的方式,并且采用占先式的调度原则。为了实现基本的任务调度功能, μC/OS-II提供了必备的任务间通信手段,包括信号量、邮箱等。为了实现任务延时,还具有基本的时钟管理。

推荐阅读:

基于DSP的室内惯性导航装置设计方案
电磁导航智能小车设计 方案 基于ZigBee技术的 RFID系统网络构建方案
一种基于物联网的智能车 载系统设计方案
一款低成本高性能的 LCD移动电源设计方案

相关资讯
“中国芯”逆袭时刻:新唐携7大新品打造全场景AIoT解决方案矩阵

在万物互联与智能化浪潮席卷全球的今天,新唐科技以颠覆性创新奏响行业强音。4月25日,这场历时10天、横跨七城的科技盛宴在深圳迎来高潮,以"创新驱动AI、新能源与车用科技"为主题,汇聚全球顶尖行业领袖,首次公开七大核心产品矩阵,展现从芯片设计到智能生态的全链条创新能力,为半导体产业转型升级注入新动能。

半导体先进制程技术博弈:台积电、英特尔与三星的差异化路径

在2025年北美技术研讨会上,台积电正式宣布其A14(1.4nm)工艺将于2028年量产,并明确表示无需依赖ASML最新一代High NA EUV光刻机。这一决策背后,折射出全球半导体巨头在技术路线、成本控制和市场竞争中的深层博弈。

嵌入式主板EMB-3128:轻量级边缘计算的工业级解决方案

随着AIoT技术的快速落地,智能设备对高性能、低功耗嵌入式硬件的需求持续攀升。华北工控推出的EMB-3128嵌入式主板,搭载Intel® Alder Lake-N系列及Core™ i3-N305处理器,以高能效比设计、工业级可靠性及丰富的接口配置,成为轻量级边缘AI计算的理想选择。该主板支持DDR5内存、多模态扩展接口及宽温运行环境,可广泛应用于智能家居、工业自动化、智慧零售等场景,助力产业智能化升级。

从ASMI财报看行业趋势:AI芯片需求爆发如何重塑半导体设备市场?

作为全球半导体沉积设备领域的龙头企业,荷兰ASM国际(ASMI)近日发布2024年第一季度财报,展现强劲增长动能。财报显示,公司当季新增订单额达8.34亿欧元(按固定汇率计算),同比增长14%,显著超出市场预期的8.08亿欧元。这一表现主要受益于人工智能芯片制造设备需求激增与中国市场的战略性突破,同时反映出半导体产业技术迭代与地缘经济博弈的双重影响。

车规级SerDes国产替代提速:解析纳芯微NLS9116/NLS9246技术优势与市场潜力

随着汽车智能化加速,车载摄像头、激光雷达、显示屏等传感器数量激增,数据传输带宽需求呈指数级增长。传统国际厂商基于私有协议(如TI的FPD-Link、ADI的GMSL)垄断车载SerDes市场,导致车企供应链弹性不足、成本高企。2025年4月,纳芯微电子发布基于HSMT公有协议的全链路国产化SerDes芯片组(NLS9116加串器与NLS9246解串器),通过协议解耦、性能优化与供应链自主可控,为ADAS、智能座舱等场景提供高性价比解决方案,标志着国产车规级芯片从“跟跑”迈向“并跑” 。