采用DC-DC模块的无人机电源完整解决方案

发布时间:2015-12-11 阅读量:2236 来源: 我爱方案网 作者: Vicor应用工程师 刘旭亮

【导读】在设计针对无人机(UAV)的电源系统时,设计人员所关心的参数是尺寸(S)、重量(W)、功率密度(P)、功率重量比、效率、热管理、灵活性和复杂性。本文为性能关键的无人机应用提供完整的电源解决方案。

体积小、重量轻、功率密度高(SWaP)可以让无人机携带更多的有效载荷,飞行和续航时间更长,并完成更多的任务。

更高的效率可以尽可能利用能源效率,最大限度地提高续航时间和飞行时间,也使热管理尽可能容易,因为即使是更少的功率损耗都会传递热量。

高度灵活性和低复杂性可以使电源系统设计更加容易,并让无人机设计人员专注于无人机设计的其他部分,而不是花太多时间在电源系统设计;它缩短了设计时间,并使设计变得不那么复杂。

为了利用以上提到的优势,Vicor模块电源解决方案可以用最全面产品组合的高效率、高密度、配电架构,为性能关键的无人机应用提供完整的电源解决方案。

无人机的种类:

无人机可以从远程位置进行控制,或基于预先配置来自动运行。无人机有许多应用,从取保候审(recognizance)到消防,都可以由不同类别的无人机实现。

无人机的种类

无人机的电源:

根据子系统的负载要求,无人机有几种可供选择的电源。

锂离子电池是一种常用的电源,由于体积小和成本较低,是100瓦和运行数天的无人机的理想选择。
为了有更高的能量密度和功率密度,还可以选择其他替代电源,包括太阳能电池系统、燃气轮机、柴油发电机等。

无人机的典型电源链:

图1:UAV电源链

在典型无人机电源链中,有一个基于涡轮的发电机提供3相ac电源,通过整流器转换为270V dc,然后通过隔离式DC-DC转换器转换为48V dc或28V dc。

系统和数据链路,其中每一个都需要一个3.3V、5V和12V等的电压范围。因此,下游DC-DC转换器或niPoL(非隔离式负载点)需要为负载提供28V或48V dc母线所需的电压。

为了实现高效率,高电压DC母线(270V、48V或28V)沿着无人机的电源链进行优先配电。由配电引起的功率损耗基于I2R(R为线电阻),由于较高的电压可以最大限度地降低损耗,从而降低了电流;尤其是大型无人机,还有很长的配电长度。

在安全方面,在高电压DC母线(270V)和低电压DC母线之间需要进行隔离,当低于60V的电压与高电压隔离开时,就符合了SELV(安全特低电压)要求。

基于图1所示的电源链,有两级DC-DC转换,由于稳压在下一级完成,其中第一级需要隔离和非稳压的DC-DC转换器,而由于隔离在上游完成,第二级需要稳压和非隔离的DC-DC转换器。为了获得更高效率和更低成本的解决方案,隔离和稳压没有在DC-DC转换器的每个级重复。

270V至28V DC-DC转换:

图2:270V至28V DC-DC转换

除了整流器,还有非隔离和非稳压的270V dc,通过MIL-COTS BCM(母线转换器模块)和MIL-COTS PRM(前置稳压器模块)转换到负载用的一个经隔离和稳压的电压,如28V。

GaAs发射器:

270V至28V电源链的应用之一是GaAs发射器,如图3所示。

图3:GaAs发射器电源链

有效载荷、GaAs发射器都需要超过200瓦的功率。为了满足电力需求,需要将BCM模块和PRM模块并联至电源阵列,以提高输出功率。下面一段谈谈如何并联具有均流能力的BCM和PRM。

BCM和PRM模块可以配置超过1千瓦的电源阵列。

表1简要说明了BCM和PRM的规格,以便可以帮助了解它们在270V至28V转换的电源链中扮演了什么角色。

表1

BCM模块是一个隔离和非稳压的DC-DC转换器模块,可通过一个固定比、K系数为SELV输出提供高输入电压。对于这个特定器件(MBCM270x450M270A00),K系数为1/6,因此输出电压始终为输入电压的1/6,270V输入有45V输出。

PRM模块是一个为负载提供稳压的稳压和非隔离的DC-DC转换器模块。由于PRM输出电压可以调整,针对GaAs发射器它可以调低至28V。

图4:GaAs发射器解决方案的效率

BCM是一个隔离和非稳压的DC-DC转换器。

PRM是一个稳压和非隔离的DC-DC转换器。

在上一段已经提到,隔离和稳压并没有由DC-DC转换的每个级,或电源链中的具体DC-DC转换器进行重复,为的是获得更高的效率。

因此,通过使用BCM和PRM模块,270V至28V DC-DC转换的整体效率达到了93.12%。

 

并联BCM和PRM的技术:

   

图5a:并联BCM

图5b:并联BCM

在并联BCM模块的同时,通过阻抗匹配而不是并联信号实现均流,很容易连接每个BCM模块的输入和输出,如图5a和5b所示。并联BCM应考虑以下几点。

通过对称布局完成输入和输出互连阻抗匹配,如图5b所示。
2)均匀冷却使具体BCM模块温度彼此接近。
3)每个BCM模块的启用/禁用信号(PC引脚)都需要在同一时间连接来启动每个模块。

图6:并联PRM

为了并联PRM模块(图6),需要使用并联信号(PR引脚)来实现各个模块的均流,同时,具体模块的启用/禁用信号(PC引脚)需要连接来同时启动所有模块。如图6所示,一个PRM模块可设置为一个电源阵列中的“主”,以驱动其他负责反馈和稳压的“从”PRM模块。

正弦振幅转换器(Sine Amplitude ConverterTM ,SACTM)拓扑结构:
母线转换器模块(BCM)采用SAC拓扑结构,从而实现了卓越的效率和功率密度。

     

图7:SACTM 转换器

SAC拓扑结构是BCM模块核心中的一个动态、高性能引擎。
SAC是基于变压器的串联谐振拓扑结构,它在等于初级侧储能电路谐振谐振频率的固定频率下工作。初级侧的开关FET被锁定在初级的自然谐振频率,在零交叉点来开关,从而消除了开关中的功耗,提高了效率并大大减少了高阶噪声谐波的产生。初级的谐振回路是纯正弦波(图7所示),从而可降低谐波含量,提供了更干净的输出噪声频谱。由于SAC的高工作频率,可使用较小的变压器来提高功率密度和效率。

ZVS升压-降压拓扑结构:

PRM?(前置稳压器模块)采用一个专利升压-降压稳压器控制架构,以提供高效率升压/降压稳压。

     

图8:ZVS升压-降压

PRM在固定开关频率下工作,通常在1 MHz(最大1.5 MHz),它还具有提高输出功率的并联能力。ZVS升压-降压开关顺序是相同的,无论它是降压还是升压。

ZVS升压-降压拓扑结构有四个级。
Q1和Q4导通为变压器储存能量,然后是ZVS过渡的Q3导通
Q1和Q3导通为从输入到输出提供路径,然后是ZVS过渡的Q2导通
Q2和Q3对续流级导通,然后是ZVS过渡的Q4导通
在箝位阶段Q2和Q4导通,然后是ZVS过渡的Q1导通

完成4级之后,就是一个循环。

 

28V / 270V输入源到多路输出DC-DC转换:
     

图9:270V / 28V到多路输出

由于有效载荷,如航空、数据链路、雷达、飞行控制系统都需要一个15V、12V、5V、3.3V的电压范围,需要下游DC-DC转换器或niPoL提供所需电压作为有效载荷的多路输出。

除了整流器,还有非稳压和非隔离的270Vdc,这个MIL-COTS DCM DC-DC转换器和Picor ZVS降压稳压器可提供经隔离和稳压的多路输出。

在第一级,MDCM DC-DC将一个非稳压输入(28V或270V)转换为一个经隔离和稳压的28V,然后通过下游非隔离式ZVS稳压器转换为多路输出。

在后一级,Coop Power ZVS降压稳压器将28V转换为负载所需的电压。

表2简要说明了DCM和Picor ZVS降压稳压器的规格,所以,它可以帮助了解它们在270V / 28V的电源链工作时对多路输出转换的作用。

表2

   

图10:多路输出解决方案的效率

 
DCM是一个隔离和稳压的DC-DC转换器。
ZVS降压稳压器是一个稳压和非隔离的DC-DC转换器。
在上一段已经提到,为了有更高的效率,不会重复隔离和稳压。

虽然稳压是由DCM和ZVS降压稳压器重复进行的,由于ZVS降压稳压器的高效率,从高电压到所需电压的整体效率可以达到高于90%。

ChiP——转换器级封装:

   

图11:ChiP等效电路热模型

DCM DC-DC转换器通过突破性封装技术——转换器级封装(ChiP)技术进行封装。

为了实现更高的功率效率、密度和设计灵活性,需要功率元件封装技术的持续改进,因此,ChiP的推出优化了电气和热性能。

ChiP产品的设计在PCB两面都有功率元件,可减少由于寄生的损耗,通过整个封装均匀彻底地散热,并利用了顶部和底部表面散热。

ChiP产品封装在热增强型模压化合物中,降低了温差,为便于使用热管理配件,提供了平整的模块顶部和底部表面,如散热器、冷板、热管等。

ZVS降压拓扑结构:

如图11所示,除了一个连接在输出电感器两端的附加箝位开关,ZVS降压拓扑结构与传统降压转换器相同。增加的箝位开关允许将能量存储在输出电感器中,用来实现零电压开关。

     

图12:ZVS降压拓扑结构

图12显示了ZVS降压拓扑结构的时序图,它主要由三个状态组成,如下所示。

Q1导通阶段

假设Q1在谐振过渡后的近零电压开启。当D-S电压几乎为零时,Q1在零电流开启。MOSFET和输出电感器中的电流斜升,准时达到由Q1决定的峰值电流。在Q1导通阶段,能量存储在输出中,并为输出电容器充电。在Q1导通阶段,Q1中的功耗是由MOSFET导通电阻决定的;开关损耗可以忽略不计。

Q2导通阶段

Q1迅速关闭,接着是一个很短时间的体二极管导通,这增加了可以忽略不计的功耗。接下来,Q2开启,存储在输出电感器中的能量被传送到负载和输出电容器。当电感器电流达到零时,同步MOSFET保持足够长的时间,在输出电感器中存储一些来自输出电容器的能量。电感器电流为负值。

箝位阶段

一旦控制器已确定有足够的能量存储在电感器中,同步MOSFET关闭,箝位开关开启,箝位Vs节点至输出电压。箝位开关隔离输出电感器电流与输出,同时以几乎无损的方式用电流来循环存储的能量。在箝位阶段,由输出电容器提供的输出在该阶段持续很短时间。

当箝位阶段结束时,箝位开关被打开。输出电感器中储存的能量与Q1和Q2输出电容产生谐振,导致Vs节点对输入电压振铃。

这个振铃对Q1的输出电容放电,减少了Q1的米勒电荷,并为Q2的输出电容充电。当Vs节点几乎等于输入电压时,这允许以无损方式方式开启Q1。

图13:ZVS降压时序图

无人机的军用标准

在一些无人机应用中,需要满足MIL-STD-461 MIL-STD-704/1275等军用标准,分别代表EMI和瞬态。
Vicor还提供滤波模块,以及兼容Vicor DC-DC转换器来满足标准要求。
表3显示了Vicor滤波模块选项,它可以符合特定军用标准,同时兼容一起使用的Vicor DC-DC模块。

     

表3

无人机数据链的电源解决方案:

   

图13:无人机数据链解决方案

对于无人机数据链解决方案,Picor滤波模块(MPQI-18)和DC-DC模块(Cool-Power PI31xx)可用来提供针对12V和15V的50W(总共100W),以符合MIL-STD-461E EMI要求。

MQPI-18是一个采用LGA封装(25×25×4.5mm,2.4G)的滤波模块,用来满足MIL-STD-461E的EMI要求。
MIL级Cool-Power DC-DC转换器采用PSiP(22×16.5×6.7mm,7.8g)封装,用来为所需电压提供宽范围输入(16-50V)。

采用Picor滤波模块和DC-DC转换器模块的解决方案可以兼容MIL-STD461E,而不是大尺寸的被动元件,可实现无人机数据链及其他设备的高密度电源解决方案。

结论:

利用Vicor模块化电源解决方案,可以使无人机电源系统设计具有体积小、重量轻和高密度的特点,携带更多有效载荷和执行更多任务。

同时,Vicor将提供创新、高性能和良好品质的电源元件/解决方案,为客户提供竞争优势。

白皮书参考:

1. SAC和ZVS升压-降压拓扑结构:分比式电源架构和VI Chip
2. ZVS降压拓扑结构:高性能ZVS降压稳压器
3. ChiP封装:ChiP热管理

推荐阅读:

规定出台,国内无人机送快递虽短期无望,还有别的商途!
大疆发布无人机用移动计算机MANIFOLD
六种关于无人机MCU技术方案的设计

相关资讯
华虹半导体2025年Q1业绩解析:逆势增长背后的挑战与破局之路

2025年第一季度,华虹半导体(港股代码:01347)实现销售收入5.409亿美元,同比增长17.6%,环比微增0.3%,符合市场预期。这一增长得益于消费电子、工业控制及汽车电子领域需求的复苏,以及公司产能利用率的持续满载(102.7%)。然而,盈利能力显著下滑,母公司拥有人应占溢利仅为380万美元,同比锐减88.05%,环比虽扭亏为盈,但仍处于低位。毛利率为9.2%,同比提升2.8个百分点,但环比下降2.2个百分点,反映出成本压力与市场竞争的加剧。

边缘计算新引擎:瑞芯微RV1126B四大核心技术深度解析

2025年5月8日,瑞芯微电子正式宣布新一代AI视觉芯片RV1126B通过量产测试并开启批量供货。作为瑞芯微在边缘计算领域的重要布局,RV1126B凭借3T算力、定制化AI-ISP架构及硬件级安全体系,重新定义了AI视觉芯片的性能边界,推动智能终端从“感知”向“认知”跃迁。

半导体IP巨头Arm:季度营收破12亿,AI生态布局能否撑起估值泡沫?

2025财年第四季度,Arm营收同比增长34%至12.4亿美元,首次突破单季10亿美元大关,超出分析师预期。调整后净利润达5.84亿美元,同比增长55%,主要得益于Armv9架构芯片在智能手机和数据中心的渗透率提升,以及计算子系统(CSS)的强劲需求。全年营收首次突破40亿美元,其中专利费收入21.68亿美元,授权收入18.39亿美元,均刷新历史纪录。

Arrow Lake的突破:混合架构与先进封装的协同进化

2024年10月,英特尔正式发布Arrow Lake架构的酷睿Ultra 200系列处理器,标志着其在桌面计算领域迈入模块化设计的新阶段。作为首款全面采用Chiplet(芯粒)技术的桌面处理器,Arrow Lake不仅通过多工艺融合实现了性能与能效的优化,更以创新的混合核心布局和缓存架构重新定义了处理器的设计范式。本文将深入解析Arrow Lake的技术突破、性能表现及其对行业的影响。

暗光性能提升29%:深度解析思特威新一代AI眼镜视觉方案

2025年5月8日,思特威(股票代码:688213)正式发布专为AI眼镜设计的1200万像素CMOS图像传感器SC1200IOT。该产品基于SmartClarity®-3技术平台,集成SFCPixel®专利技术,以小型化封装、低功耗设计及卓越暗光性能,推动AI眼镜在轻量化与影像能力上的双重突破。公司发言人表示:"AI眼镜的快速迭代正倒逼传感器技术升级,需在尺寸、功耗与画质间实现平衡,这正是SC1200IOT的核心价值所在。"